All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 127567 by mathocean1 last updated on 30/Dec/20
a=62+22i;b=1+i.Determinatepossiblevaluesofn∈Nsuchsuchthatan∈Randbn∈iR(pureimaginary).
Commented by malwan last updated on 01/Jan/21
a=3(32+i2)=[3,π6]an=[(3)n,nπ6]∈R⇒nπ6=mπ;m∈N⇒n=6m;m∈Nb=1+i=[2,π4]⇒bn=[(2)n,nπ4]∈iR⇒nπ4=(2m+1)π2⇒n=4m+2;m∈N
Answered by Ar Brandon last updated on 30/Dec/20
a=2eπ6i⇒an=2neπn6ian∈R⇒πn6=kπ,k∈Z⇒n=6kb=2eπ4i⇒bn=2neπn4ibn∈iR⇒πn4=(2k+1)π2,k∈Z⇒n=4k+2
Answered by mr W last updated on 31/Dec/20
a=2(32+12i)=2(cosπ6+isinπ6)an=2n(cosnπ6+isinnπ6)suchthatan∈R,sinnπ6=0⇒nπ6=kπ,k∈Z⇒n=6k...(1)b=1+i=2(12+12i)=2(cosπ4+isinπ4)bn=2n(cosnπ4+isinnπ4)suchthatbn∈iR,cosnπ4=0,sinnπ4≠0automatically⇒nπ4=(2k+1)2π,k∈Z⇒n=2(2k+1)...(2)forboth(1)and(2):⇒n=6(2k+1)withk∈Z
Terms of Service
Privacy Policy
Contact: info@tinkutara.com