Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127567 by mathocean1 last updated on 30/Dec/20

a=((√6)/2)+((√2)/2)i ; b=1+i.  Determinate possible values  of n ∈ N such such that a^n  ∈ R and  b^n  ∈ iR (pure imaginary).

a=62+22i;b=1+i.DeterminatepossiblevaluesofnNsuchsuchthatanRandbniR(pureimaginary).

Commented by malwan last updated on 01/Jan/21

a=(√3)(((√3)/2) + (i/2)) = [(√3) , (π/6)]  a^n  = [((√3))^n  , ((nπ)/6)]∈R  ⇒((nπ)/6) = mπ ; m∈N  ⇒n = 6m ; m∈N    b = 1+i = [(√2) , (π/4)]  ⇒b^n  = [((√2))^n  , ((nπ)/4)]∈iR  ⇒((nπ)/4) = (2m +1)(π/2)  ⇒n= 4m + 2 ; m∈N

a=3(32+i2)=[3,π6]an=[(3)n,nπ6]Rnπ6=mπ;mNn=6m;mNb=1+i=[2,π4]bn=[(2)n,nπ4]iRnπ4=(2m+1)π2n=4m+2;mN

Answered by Ar Brandon last updated on 30/Dec/20

a=(√2)e^((π/6)i) ⇒ a^n =(√2^n )e^(((πn)/6)i)   a^n ∈R ⇒ ((πn)/6)=kπ, k∈Z ⇒ n=6k  b=(√2)e^((π/4)i) ⇒b^n =(√2^n )e^(((πn)/4)i)   b^n ∈iR ⇒((πn)/4)=(((2k+1)π)/2), k∈Z ⇒n=4k+2

a=2eπ6ian=2neπn6ianRπn6=kπ,kZn=6kb=2eπ4ibn=2neπn4ibniRπn4=(2k+1)π2,kZn=4k+2

Answered by mr W last updated on 31/Dec/20

a=(√2)(((√3)/2)+(1/2)i)=(√2)(cos (π/6)+i sin (π/6))  a^n =(√2^n )(cos ((nπ)/6)+i sin ((nπ)/6))  such that a^n ∈R,  sin ((nπ)/6)=0  ⇒((nπ)/6)=kπ, k∈Z  ⇒n=6k   ...(1)    b=1+i=(√2)((1/( (√2)))+(1/( (√2)))i)=(√2)(cos (π/4)+i sin (π/4))  b^n =(√2^n )(cos ((nπ)/4)+i sin ((nπ)/4))  such that b^n ∈iR,  cos ((nπ)/4)=0, sin ((nπ)/4)≠0 automatically  ⇒((nπ)/4)=(((2k+1))/2)π, k∈Z  ⇒n=2(2k+1)   ...(2)    for both (1) and (2):  ⇒n=6(2k+1) with k∈Z

a=2(32+12i)=2(cosπ6+isinπ6)an=2n(cosnπ6+isinnπ6)suchthatanR,sinnπ6=0nπ6=kπ,kZn=6k...(1)b=1+i=2(12+12i)=2(cosπ4+isinπ4)bn=2n(cosnπ4+isinnπ4)suchthatbniR,cosnπ4=0,sinnπ40automaticallynπ4=(2k+1)2π,kZn=2(2k+1)...(2)forboth(1)and(2):n=6(2k+1)withkZ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com