Question and Answers Forum

All Questions      Topic List

Gravitation Questions

Previous in All Question      Next in All Question      

Previous in Gravitation      Next in Gravitation      

Question Number 127708 by ajfour last updated on 01/Jan/21

Commented by ajfour last updated on 01/Jan/21

A ball is dropped from a tall  tower, height h, at the equator.  Find how far from the foot of  the building, does the ball land.

$${A}\:{ball}\:{is}\:{dropped}\:{from}\:{a}\:{tall} \\ $$$${tower},\:{height}\:{h},\:{at}\:{the}\:{equator}. \\ $$$${Find}\:{how}\:{far}\:{from}\:{the}\:{foot}\:{of} \\ $$$${the}\:{building},\:{does}\:{the}\:{ball}\:{land}. \\ $$

Commented by mr W last updated on 01/Jan/21

Commented by mr W last updated on 01/Jan/21

the ball moves in horizontal direction  with the same velocity as the top  of the tower which is larger than  the speed of the foot of the tower.  BC=AA′>BB′.  that means the balls falls on ground  in front of the foot of the tower,  not behind it.

$${the}\:{ball}\:{moves}\:{in}\:{horizontal}\:{direction} \\ $$$${with}\:{the}\:{same}\:{velocity}\:{as}\:{the}\:{top} \\ $$$${of}\:{the}\:{tower}\:{which}\:{is}\:{larger}\:{than} \\ $$$${the}\:{speed}\:{of}\:{the}\:{foot}\:{of}\:{the}\:{tower}. \\ $$$${BC}={AA}'>{BB}'. \\ $$$${that}\:{means}\:{the}\:{balls}\:{falls}\:{on}\:{ground} \\ $$$${in}\:{front}\:{of}\:{the}\:{foot}\:{of}\:{the}\:{tower}, \\ $$$${not}\:{behind}\:{it}. \\ $$

Commented by mr W last updated on 02/Jan/21

u=(R+h)ω  h=(1/2)gt^2   t=(√((2h)/g))  BC=AA′=ut=(R+h)ω(√((2h)/g))  BB′=Rω(√((2h)/g))  s=BC−BB′=hω(√((2h)/g))  example:  ω=((2π)/(24×60×60))  h=100 m  s=100×((2π)/(24×60×60))×(√((2×100)/(10)))  ≈0.0325 m=32.5 mm

$${u}=\left({R}+{h}\right)\omega \\ $$$${h}=\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${t}=\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$${BC}={AA}'={ut}=\left({R}+{h}\right)\omega\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$${BB}'={R}\omega\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$${s}={BC}−{BB}'={h}\omega\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$${example}: \\ $$$$\omega=\frac{\mathrm{2}\pi}{\mathrm{24}×\mathrm{60}×\mathrm{60}} \\ $$$${h}=\mathrm{100}\:{m} \\ $$$${s}=\mathrm{100}×\frac{\mathrm{2}\pi}{\mathrm{24}×\mathrm{60}×\mathrm{60}}×\sqrt{\frac{\mathrm{2}×\mathrm{100}}{\mathrm{10}}} \\ $$$$\approx\mathrm{0}.\mathrm{0325}\:{m}=\mathrm{32}.\mathrm{5}\:{mm} \\ $$

Commented by ajfour last updated on 01/Jan/21

thanks Sir, I too got an answer  close to yours!

$${thanks}\:{Sir},\:{I}\:{too}\:{got}\:{an}\:{answer} \\ $$$${close}\:{to}\:{yours}! \\ $$

Commented by mr W last updated on 01/Jan/21

Commented by mr W last updated on 01/Jan/21

in my consideration above the   influence of the negative acceleration  in horizontal direction g_x  is not  taken into account (the dotted line  in following diagram). when this is  considered we′ll get the correct  formula  s=(2/3)hω(√((2h)/g))

$${in}\:{my}\:{consideration}\:{above}\:{the}\: \\ $$$${influence}\:{of}\:{the}\:{negative}\:{acceleration} \\ $$$${in}\:{horizontal}\:{direction}\:{g}_{{x}} \:{is}\:{not} \\ $$$${taken}\:{into}\:{account}\:\left({the}\:{dotted}\:{line}\right. \\ $$$$\left.{in}\:{following}\:{diagram}\right).\:{when}\:{this}\:{is} \\ $$$${considered}\:{we}'{ll}\:{get}\:{the}\:{correct} \\ $$$${formula} \\ $$$${s}=\frac{\mathrm{2}}{\mathrm{3}}{h}\omega\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$

Commented by mr W last updated on 01/Jan/21

Commented by ajfour last updated on 01/Jan/21

Commented by ajfour last updated on 01/Jan/21

mVr=mu(R+h)  V=((u(R+h))/r)  (dx/dt)=((u(R+h))/((R+h)−((gt^2 )/2)))  ∫dx=−((2u(R+h))/g)∫_0 ^( T) (dt/(t^2 −((2(R+h))/g)))  s=((2u(R+h))/g)×((√g)/(2(√(2(R+h)))))ln ∣(((√((2(R+h))/g))+t)/( (√((2(R+h))/g))−t))∣_0 ^T   s=u(√((R+h)/(2g)))ln (1+((2T)/λ))    ≈u(√((R+h)/(2g)))(2(√((2h)/g)))(√(g/(2(R+h))))    ≈ ω(R+h)(√((2h)/g))    =(((2π)/(1day)))(R+h)(√((2h)/g))    s_(tower) =(√((2h)/g))(((2π)/(1day)))R  △=(((2π)/(86400)))h(√((2h)/g))   for  h=100m  △≈((π((√5)))/(216))×100cm =3.25cm .

$${mVr}={mu}\left({R}+{h}\right) \\ $$$${V}=\frac{{u}\left({R}+{h}\right)}{{r}} \\ $$$$\frac{{dx}}{{dt}}=\frac{{u}\left({R}+{h}\right)}{\left({R}+{h}\right)−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\int{dx}=−\frac{\mathrm{2}{u}\left({R}+{h}\right)}{{g}}\int_{\mathrm{0}} ^{\:{T}} \frac{{dt}}{{t}^{\mathrm{2}} −\frac{\mathrm{2}\left({R}+{h}\right)}{{g}}} \\ $$$${s}=\frac{\mathrm{2}{u}\left({R}+{h}\right)}{{g}}×\frac{\sqrt{{g}}}{\mathrm{2}\sqrt{\mathrm{2}\left({R}+{h}\right)}}\mathrm{ln}\:\mid\frac{\sqrt{\frac{\mathrm{2}\left({R}+{h}\right)}{{g}}}+{t}}{\:\sqrt{\frac{\mathrm{2}\left({R}+{h}\right)}{{g}}}−{t}}\mid_{\mathrm{0}} ^{{T}} \\ $$$${s}={u}\sqrt{\frac{{R}+{h}}{\mathrm{2}{g}}}\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{2}{T}}{\lambda}\right) \\ $$$$\:\:\approx{u}\sqrt{\frac{{R}+{h}}{\mathrm{2}{g}}}\left(\mathrm{2}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\right)\sqrt{\frac{{g}}{\mathrm{2}\left({R}+{h}\right)}} \\ $$$$\:\:\approx\:\omega\left({R}+{h}\right)\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$$\:\:=\left(\frac{\mathrm{2}\pi}{\mathrm{1}{day}}\right)\left({R}+{h}\right)\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$$\:\:{s}_{{tower}} =\sqrt{\frac{\mathrm{2}{h}}{{g}}}\left(\frac{\mathrm{2}\pi}{\mathrm{1}{day}}\right){R} \\ $$$$\bigtriangleup=\left(\frac{\mathrm{2}\pi}{\mathrm{86400}}\right){h}\sqrt{\frac{\mathrm{2}{h}}{{g}}} \\ $$$$\:{for}\:\:{h}=\mathrm{100}{m} \\ $$$$\bigtriangleup\approx\frac{\pi\left(\sqrt{\mathrm{5}}\right)}{\mathrm{216}}×\mathrm{100}{cm}\:=\mathrm{3}.\mathrm{25}{cm}\:. \\ $$

Commented by mr W last updated on 01/Jan/21

your result Δ=ωh(√((2h)/g)) is the same  as what i did at the begining. but it  is not correct, because the acceleration  g is always toward the center of the  earth and has therefore a component  in x−direction. this component g_x   reduces the horizontal velocity and  therefore the horizontal   displacement. the correct answer is  Δ=(2/3)ωh(√((2h)/g)).

$${your}\:{result}\:\Delta=\omega{h}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\:{is}\:{the}\:{same} \\ $$$${as}\:{what}\:{i}\:{did}\:{at}\:{the}\:{begining}.\:{but}\:{it} \\ $$$${is}\:{not}\:{correct},\:{because}\:{the}\:{acceleration} \\ $$$${g}\:{is}\:{always}\:{toward}\:{the}\:{center}\:{of}\:{the} \\ $$$${earth}\:{and}\:{has}\:{therefore}\:{a}\:{component} \\ $$$${in}\:{x}−{direction}.\:{this}\:{component}\:{g}_{{x}} \\ $$$${reduces}\:{the}\:{horizontal}\:{velocity}\:{and} \\ $$$${therefore}\:{the}\:{horizontal}\: \\ $$$${displacement}.\:{the}\:{correct}\:{answer}\:{is} \\ $$$$\Delta=\frac{\mathrm{2}}{\mathrm{3}}\omega{h}\sqrt{\frac{\mathrm{2}{h}}{{g}}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com