Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 127778 by Bird last updated on 02/Jan/21

study tbe convergence of  Σ_n ^∞ (1/(nln(1+n)))

$${study}\:{tbe}\:{convergence}\:{of} \\ $$$$\sum_{{n}} ^{\infty} \frac{\mathrm{1}}{{nln}\left(\mathrm{1}+{n}\right)} \\ $$

Answered by mnjuly1970 last updated on 02/Jan/21

Σ_(n=1) ^∞ (1/(nln(n+1))) ≥Σ_(n=1) ^∞ (1/((n+1)ln(n+1)))  =Σ_(n=2) ^∞ (1/(nln(n))) ≈_(theorem) ^(cauchy density)  Σ_(k=1) ^∞ (2^k /(2^k ln(2^k )))  = (1/(log(2)))Σ_(k=1) ^∞ (1/k) →∞   harmonic series  is divergent..   then  the orginal seies  is divergent...  comparison test...

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{nln}\left({n}+\mathrm{1}\right)}\:\geqslant\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){ln}\left({n}+\mathrm{1}\right)} \\ $$$$=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{nln}\left({n}\right)}\:\underset{{theorem}} {\overset{{cauchy}\:{density}} {\approx}}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{{k}} }{\mathrm{2}^{{k}} {ln}\left(\mathrm{2}^{{k}} \right)} \\ $$$$=\:\frac{\mathrm{1}}{{log}\left(\mathrm{2}\right)}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}\:\rightarrow\infty \\ $$$$\:{harmonic}\:{series}\:\:{is}\:{divergent}.. \\ $$$$\:{then}\:\:{the}\:{orginal}\:{seies}\:\:{is}\:{divergent}... \\ $$$${comparison}\:{test}... \\ $$

Answered by mindispower last updated on 02/Jan/21

f:x→xln(1+x) positiv increase function  ∫_1 ^∞ f(x)dx and Σ(1/(nln(1+n))) sam nature  ∫_1 ^∞ (1/(xln(1+x)))dx= By part [((ln(x))/(ln(1+x)))]_1 ^∞ −∫_1 ^∞ ((ln(x))/((1+x)ln^2 (1+x)))  when x→∞  ((ln(x))/((1+x)ln^2 (1+x)))∼(1/((1+x)ln(1+x)))  x→(1/((1+x)ln(1+x))) not cv in+∞  ∫(dx/((1+x)ln(1+x)))=ln(ln(1+x)→∞  ⇒Σ(1/(nln(1+n))) Dv

$${f}:{x}\rightarrow{xln}\left(\mathrm{1}+{x}\right)\:{positiv}\:{increase}\:{function} \\ $$$$\int_{\mathrm{1}} ^{\infty} {f}\left({x}\right){dx}\:{and}\:\Sigma\frac{\mathrm{1}}{{nln}\left(\mathrm{1}+{n}\right)}\:{sam}\:{nature} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{xln}\left(\mathrm{1}+{x}\right)}{dx}=\:{By}\:{part}\:\left[\frac{{ln}\left({x}\right)}{{ln}\left(\mathrm{1}+{x}\right)}\right]_{\mathrm{1}} ^{\infty} −\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)} \\ $$$${when}\:{x}\rightarrow\infty \\ $$$$\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}\sim\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)} \\ $$$${x}\rightarrow\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)}\:{not}\:{cv}\:{in}+\infty \\ $$$$\int\frac{{dx}}{\left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)}={ln}\left({ln}\left(\mathrm{1}+{x}\right)\rightarrow\infty\right. \\ $$$$\Rightarrow\Sigma\frac{\mathrm{1}}{{nln}\left(\mathrm{1}+{n}\right)}\:{Dv} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com