Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 127974 by Dwaipayan Shikari last updated on 03/Jan/21

θ^(••) +(g/l)sinθ=0  Exact form (May include elliptic integral)

$$\overset{\bullet\bullet} {\theta}+\frac{{g}}{{l}}{sin}\theta=\mathrm{0} \\ $$$${Exact}\:{form}\:\left({May}\:{include}\:{elliptic}\:{integral}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jan/21

My try  θ^(••)  θ^• +θ^• (g/l) sinθ=0⇒(1/2).(d/dt)(θ^• )^2 −(g/l).(d/dt)(cosθ)=0  ⇒(θ^• )^2 −((2g)/l)cos(θ)=C  ⇒(θ^• )^2 +((4g)/l)sin^2 (θ/2)=C+((2g)/l)⇒θ^• =(√(C+((2g)/l)−((4g)/l)sin^2 (θ/2)))  ⇒∫(dθ/( (√(C+((2g)/l)))((√(1−((4g)/(C .l+2g))sin^2 (θ/2))))))=∫dt  ⇒2∫(dζ/( (√(C+((2g)/l)))((√(1−((√((4g)/(C .l+2g))))^2 sin^2 ζ)))))=t+Φ  ⇒2(1/( (√(C+((2g)/l)))))F((θ/2)∣(√((4g)/(C .l+2g))))=t+Φ  ⇒F((θ/2)∣(√((4g)/(C .l+2g))))=(1/2)(t+Φ)(√(C+((2g)/l)))

$${My}\:{try} \\ $$$$\overset{\bullet\bullet} {\theta}\:\overset{\bullet} {\theta}+\overset{\bullet} {\theta}\frac{{g}}{{l}}\:{sin}\theta=\mathrm{0}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}.\frac{{d}}{{dt}}\left(\overset{\bullet} {\theta}\right)^{\mathrm{2}} −\frac{{g}}{{l}}.\frac{{d}}{{dt}}\left({cos}\theta\right)=\mathrm{0} \\ $$$$\Rightarrow\left(\overset{\bullet} {\theta}\right)^{\mathrm{2}} −\frac{\mathrm{2}{g}}{{l}}{cos}\left(\theta\right)={C} \\ $$$$\Rightarrow\left(\overset{\bullet} {\theta}\right)^{\mathrm{2}} +\frac{\mathrm{4}{g}}{{l}}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}={C}+\frac{\mathrm{2}{g}}{{l}}\Rightarrow\overset{\bullet} {\theta}=\sqrt{{C}+\frac{\mathrm{2}{g}}{{l}}−\frac{\mathrm{4}{g}}{{l}}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$\Rightarrow\int\frac{{d}\theta}{\:\sqrt{{C}+\frac{\mathrm{2}{g}}{{l}}}\left(\sqrt{\mathrm{1}−\frac{\mathrm{4}{g}}{{C}\:.{l}+\mathrm{2}{g}}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}}\right)}=\int{dt} \\ $$$$\Rightarrow\mathrm{2}\int\frac{{d}\zeta}{\:\sqrt{{C}+\frac{\mathrm{2}{g}}{{l}}}\left(\sqrt{\mathrm{1}−\left(\sqrt{\frac{\mathrm{4}{g}}{{C}\:.{l}+\mathrm{2}{g}}}\right)^{\mathrm{2}} {sin}^{\mathrm{2}} \zeta}\right)}={t}+\Phi \\ $$$$\Rightarrow\mathrm{2}\frac{\mathrm{1}}{\:\sqrt{{C}+\frac{\mathrm{2}{g}}{{l}}}}{F}\left(\frac{\theta}{\mathrm{2}}\mid\sqrt{\frac{\mathrm{4}{g}}{{C}\:.{l}+\mathrm{2}{g}}}\right)={t}+\Phi \\ $$$$\Rightarrow{F}\left(\frac{\theta}{\mathrm{2}}\mid\sqrt{\frac{\mathrm{4}{g}}{{C}\:.{l}+\mathrm{2}{g}}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({t}+\Phi\right)\sqrt{{C}+\frac{\mathrm{2}{g}}{{l}}} \\ $$

Answered by mr W last updated on 03/Jan/21

θ^• (dθ^(•) /dθ)=−(g/l)sin θ  (θ^(•) )^2 =((2g)/l)(cos θ−cos θ_0 )  θ^• =(dθ/dt)=(√((2g(cos θ−cos θ_0 ))/l))  (dθ/( (√(cos θ−cos θ_0 ))))=(√((2g)/l)) dt  ⇒t=(√(l/(2g)))∫_0 ^θ (dθ/( (√(cos θ−cos θ_0 ))))  ⇒t=(√((2l)/g))×((F((θ/2)∣(2/(1−cos θ_0 ))))/( (√(1−cos θ_0 ))))

$$\overset{\bullet} {\theta}\frac{{d}\overset{\bullet} {\theta}}{{d}\theta}=−\frac{{g}}{{l}}\mathrm{sin}\:\theta \\ $$$$\left(\overset{\bullet} {\theta}\right)^{\mathrm{2}} =\frac{\mathrm{2}{g}}{{l}}\left(\mathrm{cos}\:\theta−\mathrm{cos}\:\theta_{\mathrm{0}} \right) \\ $$$$\overset{\bullet} {\theta}=\frac{{d}\theta}{{dt}}=\sqrt{\frac{\mathrm{2}{g}\left(\mathrm{cos}\:\theta−\mathrm{cos}\:\theta_{\mathrm{0}} \right)}{{l}}} \\ $$$$\frac{{d}\theta}{\:\sqrt{\mathrm{cos}\:\theta−\mathrm{cos}\:\theta_{\mathrm{0}} }}=\sqrt{\frac{\mathrm{2}{g}}{{l}}}\:{dt} \\ $$$$\Rightarrow{t}=\sqrt{\frac{{l}}{\mathrm{2}{g}}}\int_{\mathrm{0}} ^{\theta} \frac{{d}\theta}{\:\sqrt{\mathrm{cos}\:\theta−\mathrm{cos}\:\theta_{\mathrm{0}} }} \\ $$$$\Rightarrow{t}=\sqrt{\frac{\mathrm{2}{l}}{{g}}}×\frac{{F}\left(\frac{\theta}{\mathrm{2}}\mid\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\theta_{\mathrm{0}} }\right)}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:\theta_{\mathrm{0}} }} \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jan/21

Thanking you sir

$${Thanking}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com