Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 127982 by Dwaipayan Shikari last updated on 03/Jan/21

Some Values ..  Σ_(n=−∞) ^∞ e^(−πn^2 ) =(π^(1/4) /(Γ((3/4))))  Σ_(n=−∞) ^∞ e^(−2πn^2 ) =(π^(1/4) /(Γ((3/4)))) (((6+4(√2)))^(1/4) /2)  Σ_(n=−∞) ^∞ e^(−6πn^2 ) =(π^(1/4) /(Γ((3/4)))).((√((1)^(1/4) +(3)^(1/4) +(4)^(1/4) +(9)^(1/4) ))/( (√(1728))))  Any Idea to prove ?

$${Some}\:{Values}\:.. \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\pi{n}^{\mathrm{2}} } =\frac{\pi^{\frac{\mathrm{1}}{\mathrm{4}}} }{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\pi{n}^{\mathrm{2}} } =\frac{\pi^{\frac{\mathrm{1}}{\mathrm{4}}} }{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\:\frac{\sqrt[{\mathrm{4}}]{\mathrm{6}+\mathrm{4}\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\mathrm{6}\pi{n}^{\mathrm{2}} } =\frac{\pi^{\frac{\mathrm{1}}{\mathrm{4}}} }{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}.\frac{\sqrt{\sqrt[{\mathrm{4}}]{\mathrm{1}}+\sqrt[{\mathrm{4}}]{\mathrm{3}}+\sqrt[{\mathrm{4}}]{\mathrm{4}}+\sqrt[{\mathrm{4}}]{\mathrm{9}}}}{\:\sqrt{\mathrm{1728}}} \\ $$$${Any}\:{Idea}\:{to}\:{prove}\:? \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jan/21

There are so many theta function values derived by Ramanujan  Σ_(n=−∞) ^∞ e^(−3πn^2 ) =((π)^(1/4) /(Γ((3/4)))).(((27+18(√3)))^(1/4) /3)  Σ_(n=−∞) ^∞ e^(−4πn^2 ) =((π)^(1/4) /(Γ((3/4)))).(((8)^(1/4) +2)/4)  Σ_(n=−∞) ^∞ e^(−7πn^2 ) =((π)^(1/4) /(Γ((3/4)))).((√(7+4(√7)+5((28))^(1/4) +((1378))^(1/4) ))/( (√7)))

$${There}\:{are}\:{so}\:{many}\:{theta}\:{function}\:{values}\:{derived}\:{by}\:{Ramanujan} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\mathrm{3}\pi{n}^{\mathrm{2}} } =\frac{\sqrt[{\mathrm{4}}]{\pi}}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}.\frac{\sqrt[{\mathrm{4}}]{\mathrm{27}+\mathrm{18}\sqrt{\mathrm{3}}}}{\mathrm{3}} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\mathrm{4}\pi{n}^{\mathrm{2}} } =\frac{\sqrt[{\mathrm{4}}]{\pi}}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}.\frac{\sqrt[{\mathrm{4}}]{\mathrm{8}}+\mathrm{2}}{\mathrm{4}} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\mathrm{7}\pi{n}^{\mathrm{2}} } =\frac{\sqrt[{\mathrm{4}}]{\pi}}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}.\frac{\sqrt{\mathrm{7}+\mathrm{4}\sqrt{\mathrm{7}}+\mathrm{5}\sqrt[{\mathrm{4}}]{\mathrm{28}}+\sqrt[{\mathrm{4}}]{\mathrm{1378}}}}{\:\sqrt{\mathrm{7}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com