Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 127997 by mr W last updated on 05/Jan/21

Commented by mr W last updated on 05/Jan/21

a paraboloid bowl has a depth of H  and an opening with diameter L.  a small block of mass m is released  from rest at the rim of the bowl.  the friction coefficient between the  objects is μ. assume the friction is  small enough such that the block can  pass through the lowest point.  find the maximum height h the small  block reaches.

aparaboloidbowlhasadepthofHandanopeningwithdiameterL.asmallblockofmassmisreleasedfromrestattherimofthebowl.thefrictioncoefficientbetweentheobjectsisμ.assumethefrictionissmallenoughsuchthattheblockcanpassthroughthelowestpoint.findthemaximumheighththesmallblockreaches.

Answered by mr W last updated on 04/Jan/21

Commented by mr W last updated on 05/Jan/21

R=(L/2)=radius of opening  let η=(H/R), ξ=(x/R)∈[−1,1]  y=H((x/R))^2 =Hξ^2   tan θ=y′=2H(x/R^2 )=2ηξ  y′′=2(H/R^2 )=((2η)/R)  radius of curvature r=(([1+(y′)^2 ]^(3/2) )/(∣y′′∣))  ⇒r=(((1+4η^2 ξ^2 )^(3/2) R)/(2η))  ds=(√(1+(y′)^2 ))dx=R(√(1+4η^2 ξ^2 ))dξ    phase 1: from point A to point O  phase 2: from point O to point B    phase 1:  N=mg cos θ+m(v^2 /r)  f=μN=μm(g cos θ+(v^2 /r))  ma=mg sin θ−f  a=g sin θ−μ(g cos θ+(v^2 /r))  a=g(sin θ−μ cos θ)−((μv^2 )/r)  a=(dv/dt)=(dv/ds)×(ds/dt)=−v(dv/ds)  −((vdv)/(R(√(1+4η^2 ξ^2 ))dξ))=((g(2ηξ−μ))/( (√(1+4η^2 ξ^2 ))))−((2μηv^2 )/((1+4η^2 ξ^2 )^(3/2) R))  ((vdv)/( dξ))=−gR(2ηξ−μ)+((2μηv^2 )/(1+4η^2 ξ^2 ))   ...(i)  ((2ηvdv)/( d(2ηξ)))=−gR(2ηξ−μ)+((2μηv^2 )/(1+4η^2 ξ^2 ))  ((vdv)/( du))=−((gR)/(2η))(u−μ)+((μv^2 )/(1+u^2 ))   let u=2ηξ, w=v^2   ⇒(dw/( du))−((2μw)/(1+u^2 ))=−((gR)/η)(u−μ)  I=−2μ∫(du/(1+u^2 ))=−2μ tan^(−1) u  ⇒w=−((gR)/(ηe^(−2μ tan^(−1) u) ))[∫(u−μ)e^(−2μ tan^(−1) u) du−C]  ⇒w=−((gR)/(2ηe^(−2μ tan^(−1) u) ))[(1+u^2 )e^(−2μ tan^(−1) u) −C]  ⇒v^2 =((gR)/(2η))e^(2μ tan^(−1) (2ηξ)) [C−(1+4η^2 ξ^2 )e^(−2μ tan^(−1) (2ηξ)) ]  at ξ=1, v=0:  C=(1+4η^2 )e^(−2μ tan^(−1) (2η))   ⇒v^2 =((gR)/(2η))e^(2μ tan^(−1) (2ηξ)) [(1+4η^2 )e^(−2μ tan^(−1) (2η)) −(1+4η^2 ξ^2 )e^(−2μ tan^(−1) (2ηξ)) ]  ⇒v^2 =((gR)/(2η)){(1+4η^2 )e^(−2μ[tan^(−1) (2η)−tan^(−1) (2ηξ)]) −(1+4η^2 ξ^2 )}   ...(I)  at ξ=0, v=v_0 :  v_0 ^2 =((gR)/(2η))[(1+4η^2 )e^(−2μ tan^(−1) (2η)) −1]  ⇒v_0 =(√(((gR)/(2η))[(1+4η^2 )e^(−2μ tan^(−1) (2η)) −1]))  such that the block reaches the lowest  point, v_0 ≥0:  (1+4η^2 )e^(−2μ tan^(−1) (2η)) −1≥0  e^(2μ tan^(−1) (2η)) ≤1+4η^2   ⇒μ≤((ln (1+4η^2 ))/(2 tan^(−1) (2η)))=μ_(max)     phase 2:  ma=−mg sin θ−f  a=−g sin θ−μ(g cos θ+(v^2 /r))  a=−g(sin θ+μ cos θ)−((μv^2 )/r)  a=(dv/dt)=(dv/ds)×(ds/dt)=v(dv/ds)  ((vdv)/(R(√(1+4η^2 ξ^2 ))dξ))=−((g(2ηξ+μ))/( (√(1+4η^2 ξ^2 ))))−((2μηv^2 )/((1+4η^2 ξ^2 )^(3/2) R))  ((vdv)/( dξ))=−gR(2ηξ+μ)−((2μηv^2 )/(1+4η^2 ξ^2 ))   ...(ii)  ⇒(dw/( du))+((2μw)/(1+u^2 ))=−((gR)/η)(u+μ)   similarly as with (i),  ⇒v^2 =((gR)/(2η))e^(−2μ tan^(−1) (2ηξ)) [C−(1+4η^2 ξ^2 )e^(2μ tan^(−1) (2ηξ)) ]  at ξ=0, v=v_0 :  v_0 ^2 =((gR)/(2η))(C−1)=((gR)/(2η))[(1+4η^2 )e^(−2μ tan^(−1) (2η)) −1]  ⇒C=(1+4η^2 )e^(−2μ tan^(−1) (2η))   ⇒v^2 =((gR)/(2η))e^(−2μ tan^(−1) (2ηξ)) [(1+4η^2 )e^(−2μ tan^(−1) (2η)) −(1+4η^2 ξ^2 )e^(2μ tan^(−1) (2ηξ)) ]  ⇒v^2 =((gR)/(2η)){(1+4η^2 )e^(−2μ[tan^(−1) (2η)+tan^(−1) (2ηξ)]) −(1+4η^2 ξ^2 )}   ...(II)  we see we get (II) by replacing ξ with  −ξ in (I). that means (II) and (I) are  identical.    at the highest point B the speed is 0:  ((gR)/(2η)){(1+4η^2 )e^(−2μ[tan^(−1) (2η)+tan^(−1) (2ηξ)]) −(1+4η^2 ξ^2 )}=0  (1+4η^2 )e^(−2μ[tan^(−1) (2η)+tan^(−1) (2ηξ)]) =(1+4η^2 ξ^2 )  e^(2μ[tan^(−1) (2η)+tan^(−1) (2ηξ)]) =((1+4η^2 )/(1+4η^2 ξ^2 ))  ⇒tan^(−1) (2η)+tan^(−1) (2ηξ)=(1/(2μ))ln ((1+4η^2 )/(1+4η^2 ξ^2 ))  ⇒ln (1+4η^2 ξ^2 )+2μ tan^(−1) (2ηξ)=ln (1+4η^2 )−2μ tan^(−1) (2η)   ...(III)  from this equation we can determine  ξ at which the block reaches the  highest point.    example: μ=0  ln (1+4η^2 ξ^2 )=ln (1+4η^2 )  ⇒ξ=±1  i.e. the block can reach the rim again.    example: η=(H/R)=1  ⇒μ_(max) =((ln (1+4η^2 ))/(2 tan^(−1) (2η)))=((ln 5)/(2 tan^(−1) 2))=0.7268  for μ=(1/2):  ⇒ξ≈0.1914 ⇒h_(max) ≈0.037H  for μ=(1/4):  ⇒ξ≈0.488 ⇒h_(max) ≈0.238H    example: η=(H/R)=4  ⇒μ_(max) =((ln (1+4η^2 ))/(2 tan^(−1) (2η)))=((ln 65)/(2 tan^(−1) 8))=1.443  for μ=(1/2):  ⇒ξ≈0.2514 ⇒h_(max) ≈0.063H  for μ=(1/4):  ⇒ξ≈0.4889 ⇒h_(max) ≈0.239H  ■  v^2 =((gR)/(2η)){(1+4η^2 )e^(−2μ[tan^(−1) (2η)−tan^(−1) (2ηξ)]) −(1+4η^2 ξ^2 )}  v=−(ds/dt)=−((R(√(1+4η^2 ξ^2 ))dξ)/dt)=(√((gR)/(2η)))(√((1+4η^2 )e^(−2μ[tan^(−1) (2η)−tan^(−1) (2ηξ)]) −(1+4η^2 ξ^2 )))  t=(√((2H)/g))∫_ξ ^1 (1/( (√(((1+4η^2 )/(1+4η^2 ξ^2 )) e^(−2μ[tan^(−1) (2η)−tan^(−1) (2ηξ)]) −1))))dξ    N=m(g cos θ+(v^2 /r))  N=mg{(1/( (√(1+4η^2 ξ^2 ))))+(((1+4η^2 )e^(−2μ[tan^(−1) (2η)−tan^(−1) (2ηξ)]) −(1+4η^2 ξ^2 ))/((1+4η^2 ξ^2 )^(3/2) ))}  (N/(mg))=((1+4η^2 )/((1+4η^2 ξ^2 )^(3/2) )) e^(−2μ[tan^(−1) (2η)−tan^(−1) (2ηξ)])

R=L2=radiusofopeningletη=HR,ξ=xR[1,1]y=H(xR)2=Hξ2tanθ=y=2HxR2=2ηξy=2HR2=2ηRradiusofcurvaturer=[1+(y)2]32yr=(1+4η2ξ2)32R2ηds=1+(y)2dx=R1+4η2ξ2dξphase1:frompointAtopointOphase2:frompointOtopointBphase1:N=mgcosθ+mv2rf=μN=μm(gcosθ+v2r)ma=mgsinθfa=gsinθμ(gcosθ+v2r)a=g(sinθμcosθ)μv2ra=dvdt=dvds×dsdt=vdvdsvdvR1+4η2ξ2dξ=g(2ηξμ)1+4η2ξ22μηv2(1+4η2ξ2)32Rvdvdξ=gR(2ηξμ)+2μηv21+4η2ξ2...(i)2ηvdvd(2ηξ)=gR(2ηξμ)+2μηv21+4η2ξ2vdvdu=gR2η(uμ)+μv21+u2letu=2ηξ,w=v2dwdu2μw1+u2=gRη(uμ)I=2μdu1+u2=2μtan1uw=gRηe2μtan1u[(uμ)e2μtan1uduC]w=gR2ηe2μtan1u[(1+u2)e2μtan1uC]v2=gR2ηe2μtan1(2ηξ)[C(1+4η2ξ2)e2μtan1(2ηξ)]atξ=1,v=0:C=(1+4η2)e2μtan1(2η)v2=gR2ηe2μtan1(2ηξ)[(1+4η2)e2μtan1(2η)(1+4η2ξ2)e2μtan1(2ηξ)]v2=gR2η{(1+4η2)e2μ[tan1(2η)tan1(2ηξ)](1+4η2ξ2)}...(I)atξ=0,v=v0:v02=gR2η[(1+4η2)e2μtan1(2η)1]v0=gR2η[(1+4η2)e2μtan1(2η)1]suchthattheblockreachesthelowestpoint,v00:(1+4η2)e2μtan1(2η)10e2μtan1(2η)1+4η2μln(1+4η2)2tan1(2η)=μmaxphase2:ma=mgsinθfa=gsinθμ(gcosθ+v2r)a=g(sinθ+μcosθ)μv2ra=dvdt=dvds×dsdt=vdvdsvdvR1+4η2ξ2dξ=g(2ηξ+μ)1+4η2ξ22μηv2(1+4η2ξ2)32Rvdvdξ=gR(2ηξ+μ)2μηv21+4η2ξ2...(ii)dwdu+2μw1+u2=gRη(u+μ)similarlyaswith(i),v2=gR2ηe2μtan1(2ηξ)[C(1+4η2ξ2)e2μtan1(2ηξ)]atξ=0,v=v0:v02=gR2η(C1)=gR2η[(1+4η2)e2μtan1(2η)1]C=(1+4η2)e2μtan1(2η)v2=gR2ηe2μtan1(2ηξ)[(1+4η2)e2μtan1(2η)(1+4η2ξ2)e2μtan1(2ηξ)]v2=gR2η{(1+4η2)e2μ[tan1(2η)+tan1(2ηξ)](1+4η2ξ2)}...(II)weseeweget(II)byreplacingξwithξin(I).thatmeans(II)and(I)areidentical.atthehighestpointBthespeedis0:gR2η{(1+4η2)e2μ[tan1(2η)+tan1(2ηξ)](1+4η2ξ2)}=0(1+4η2)e2μ[tan1(2η)+tan1(2ηξ)]=(1+4η2ξ2)e2μ[tan1(2η)+tan1(2ηξ)]=1+4η21+4η2ξ2tan1(2η)+tan1(2ηξ)=12μln1+4η21+4η2ξ2ln(1+4η2ξ2)+2μtan1(2ηξ)=ln(1+4η2)2μtan1(2η)...(III)fromthisequationwecandetermineξatwhichtheblockreachesthehighestpoint.example:μ=0ln(1+4η2ξ2)=ln(1+4η2)ξ=±1i.e.theblockcanreachtherimagain.example:η=HR=1μmax=ln(1+4η2)2tan1(2η)=ln52tan12=0.7268forμ=12:ξ0.1914hmax0.037Hforμ=14:ξ0.488hmax0.238Hexample:η=HR=4μmax=ln(1+4η2)2tan1(2η)=ln652tan18=1.443forμ=12:ξ0.2514hmax0.063Hforμ=14:ξ0.4889hmax0.239Hv2=gR2η{(1+4η2)e2μ[tan1(2η)tan1(2ηξ)](1+4η2ξ2)}v=dsdt=R1+4η2ξ2dξdt=gR2η(1+4η2)e2μ[tan1(2η)tan1(2ηξ)](1+4η2ξ2)t=2Hgξ111+4η21+4η2ξ2e2μ[tan1(2η)tan1(2ηξ)]1dξN=m(gcosθ+v2r)N=mg{11+4η2ξ2+(1+4η2)e2μ[tan1(2η)tan1(2ηξ)](1+4η2ξ2)(1+4η2ξ2)32}Nmg=1+4η2(1+4η2ξ2)32e2μ[tan1(2η)tan1(2ηξ)]

Commented by ajfour last updated on 04/Jan/21

how you managed, great attempt  Sir,  and yes i did ignore (v^2 /r)  ...

howyoumanaged,greatattemptSir,andyesididignorev2r...

Commented by mr W last updated on 04/Jan/21

following diagram shows how the  velocity of the block changes.

followingdiagramshowshowthevelocityoftheblockchanges.

Commented by mr W last updated on 04/Jan/21

Commented by mr W last updated on 04/Jan/21

Commented by mr W last updated on 05/Jan/21

Commented by ajfour last updated on 05/Jan/21

    N−mgcos θ=((mv^2 )/r)      mgsin θ−f=((mdv)/dt)      (f/N)=μ    tan θ=2kx   ;  sec^2 θdθ=2kdx   r=((sec^3 θ)/(2k))          μ=((gsin θ−((vdv)/ds))/(gcos θ+(v^2 /r)))    μ=((gtan θ−((d(v^2 ))/((((sec^2 θdθ)/(2k))))))/(g+v^2 (((sec^2 θ)/(2k)))))     2gktan θsec^2 θ−((d(v^2 ))/dθ)     = 2μgksec^2 θ+μv^2   ((d(v^2 ))/dθ)+μ(v^2 )=2gk(tanθ−μ)sec^2 θ  d(v^2 )+μ(v^2 )d(tan^(−1) s)=2gk(s−μ)ds  d(v^2 )+((μv^2 ds)/(1+s^2 ))=2gk(s−μ)ds  (1+s^2 )d(v^2 )+μv^2 ds        = 2gk(1+s^2 )(s−μ)ds  ⇒    ∫d[(1+s^2 )(v^2 )]+∫(μ−2s)(v^2 )ds        =2gk∫(1+s^2 )(s−μ)ds  0+∫_θ_0  ^( θ) (μ−2s)(v^2 )ds      =2gk((s^4 /4)−((μs^3 )/3)+(s^2 /2)−μs)_θ_0  ^θ   ⇒  (μs−s^2 )v^2 −∫(μs−s^2 )d(v^2 )               =2gk((s^4 /4)−((μs^3 )/3)+(s^2 /2)−μs)_θ_0  ^θ   Anyhow  here  is the plan  ⇒  v^2 =f(θ)  v^2 =0   ⇒  θ=θ_0   and  θ=β  tan θ_0 =2kR  ,  tan β=−2k∣x_f ∣  kx_f ^2 =h.

Nmgcosθ=mv2rmgsinθf=mdvdtfN=μtanθ=2kx;sec2θdθ=2kdxr=sec3θ2kμ=gsinθvdvdsgcosθ+v2rμ=gtanθd(v2)(sec2θdθ2k)g+v2(sec2θ2k)2gktanθsec2θd(v2)dθ=2μgksec2θ+μv2d(v2)dθ+μ(v2)=2gk(tanθμ)sec2θd(v2)+μ(v2)d(tan1s)=2gk(sμ)dsd(v2)+μv2ds1+s2=2gk(sμ)ds(1+s2)d(v2)+μv2ds=2gk(1+s2)(sμ)dsd[(1+s2)(v2)]+(μ2s)(v2)ds=2gk(1+s2)(sμ)ds0+θ0θ(μ2s)(v2)ds=2gk(s44μs33+s22μs)θ0θ(μss2)v2(μss2)d(v2)=2gk(s44μs33+s22μs)θ0θAnyhowhereistheplanv2=f(θ)v2=0θ=θ0andθ=βtanθ0=2kR,tanβ=2kxfkxf2=h.

Commented by mr W last updated on 05/Jan/21

thanks for this new way attempt sir!

thanksforthisnewwayattemptsir!

Commented by Ahmed1hamouda last updated on 05/Jan/21

  What is the name of the application you are using in drawing functions?

What is the name of the application you are using in drawing functions?

Commented by mr W last updated on 05/Jan/21

Grapher

Grapher

Terms of Service

Privacy Policy

Contact: info@tinkutara.com