Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128007 by ajfour last updated on 03/Jan/21

Can anyone find any error in  my attempt to improve upon  the Cardano′s cubic formula..  or as an alternate to the  trigonometric solution...  here it goes:      X^3 −pX−q=0  let  (X/( (√p))) = x ;  and with (q/(p(√p))) = c ,      x^3 −x−c=0  let  x=(k+1)(p+q)             =(p+kq) + (kp+q)      p^3 +k^3 q^3 +3kpq(p+kq)+      k^3 p^3 +q^3 +3kpq(kp+q)       −(p+kq)−(kp+q)=c  ⇒     (1+k^3 )(p^3 +q^3 )+     (p+kq)(3kpq−1)+     (kp+q)(3kpq−1)= c  let   3kpq=1   ⇒     p^3 +q^3 =(c/(1+k^3 ))  &   p^3 q^3 =(1/(27k^3 ))   ;  hence     p^3 , q^3   =     (c/(2(1+k^3 )))±(√((c^2 /(4(1+k^3 )^2 ))−(1/(27k^3 ))))  lets choose upon a value of k  such that D=0  ⇒  4(1+k^3 )^2 =27c^2 k^3    .....(I)    (just a quadratic..)  first for   c^2 >(8/(27))  we  always can  get two real k values, and even  p=q then.    x=(k+1)(p+q)      = 2(k+1)p    x=2(k+1)[(c/(2(1+k^3 )))]^(1/3)   but simply  pq=(1/(3k))   hence   x=2(k+1)p = ((2(k+1))/( (√(3k))))  .  ________________________  even for  c=1  i dint get a  correct answer,  please help  error-freeing it. (Thanks!)

$${Can}\:{anyone}\:{find}\:{any}\:{error}\:{in} \\ $$$${my}\:{attempt}\:{to}\:{improve}\:{upon} \\ $$$${the}\:{Cardano}'{s}\:{cubic}\:{formula}.. \\ $$$${or}\:{as}\:{an}\:{alternate}\:{to}\:{the} \\ $$$${trigonometric}\:{solution}... \\ $$$${here}\:{it}\:{goes}: \\ $$$$\:\:\:\:{X}^{\mathrm{3}} −{pX}−{q}=\mathrm{0} \\ $$$${let}\:\:\frac{{X}}{\:\sqrt{{p}}}\:=\:{x}\:;\:\:{and}\:{with}\:\frac{{q}}{{p}\sqrt{{p}}}\:=\:{c}\:, \\ $$$$\:\:\:\:{x}^{\mathrm{3}} −{x}−{c}=\mathrm{0} \\ $$$${let}\:\:\boldsymbol{{x}}=\left(\boldsymbol{{k}}+\mathrm{1}\right)\left(\boldsymbol{{p}}+\boldsymbol{{q}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\left(\boldsymbol{{p}}+\boldsymbol{{kq}}\right)\:+\:\left(\boldsymbol{{kp}}+\boldsymbol{{q}}\right) \\ $$$$\:\:\:\:{p}^{\mathrm{3}} +{k}^{\mathrm{3}} {q}^{\mathrm{3}} +\mathrm{3}{kpq}\left({p}+{kq}\right)+ \\ $$$$\:\:\:\:{k}^{\mathrm{3}} {p}^{\mathrm{3}} +{q}^{\mathrm{3}} +\mathrm{3}{kpq}\left({kp}+{q}\right) \\ $$$$\:\:\:\:\:−\left({p}+{kq}\right)−\left({kp}+{q}\right)={c} \\ $$$$\Rightarrow \\ $$$$\:\:\:\left(\mathrm{1}+{k}^{\mathrm{3}} \right)\left({p}^{\mathrm{3}} +{q}^{\mathrm{3}} \right)+ \\ $$$$\:\:\:\left({p}+{kq}\right)\left(\mathrm{3}{kpq}−\mathrm{1}\right)+ \\ $$$$\:\:\:\left({kp}+{q}\right)\left(\mathrm{3}{kpq}−\mathrm{1}\right)=\:{c} \\ $$$${let}\:\:\:\mathrm{3}\boldsymbol{{kpq}}=\mathrm{1}\:\:\:\Rightarrow \\ $$$$\:\:\:{p}^{\mathrm{3}} +{q}^{\mathrm{3}} =\frac{{c}}{\mathrm{1}+{k}^{\mathrm{3}} } \\ $$$$\&\:\:\:{p}^{\mathrm{3}} {q}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{27}{k}^{\mathrm{3}} }\:\:\:;\:\:{hence} \\ $$$$\:\:\:{p}^{\mathrm{3}} ,\:{q}^{\mathrm{3}} \:\:=\: \\ $$$$\:\:\frac{{c}}{\mathrm{2}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)}\pm\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{27}{k}^{\mathrm{3}} }} \\ $$$${lets}\:{choose}\:{upon}\:{a}\:{value}\:{of}\:\boldsymbol{{k}} \\ $$$${such}\:{that}\:{D}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{4}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)^{\mathrm{2}} =\mathrm{27}{c}^{\mathrm{2}} {k}^{\mathrm{3}} \:\:\:.....\left({I}\right) \\ $$$$\:\:\left({just}\:{a}\:{quadratic}..\right) \\ $$$${first}\:{for}\:\:\:{c}^{\mathrm{2}} >\frac{\mathrm{8}}{\mathrm{27}}\:\:{we}\:\:{always}\:{can} \\ $$$${get}\:{two}\:{real}\:{k}\:{values},\:{and}\:{even} \\ $$$${p}={q}\:{then}. \\ $$$$\:\:{x}=\left({k}+\mathrm{1}\right)\left({p}+{q}\right) \\ $$$$\:\:\:\:=\:\mathrm{2}\left({k}+\mathrm{1}\right){p}\: \\ $$$$\:{x}=\mathrm{2}\left({k}+\mathrm{1}\right)\left[\frac{{c}}{\mathrm{2}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)}\right]^{\mathrm{1}/\mathrm{3}} \\ $$$${but}\:{simply}\:\:{pq}=\frac{\mathrm{1}}{\mathrm{3}{k}}\:\:\:{hence} \\ $$$$\:{x}=\mathrm{2}\left({k}+\mathrm{1}\right){p}\:=\:\frac{\mathrm{2}\left({k}+\mathrm{1}\right)}{\:\sqrt{\mathrm{3}{k}}}\:\:. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${even}\:{for}\:\:{c}=\mathrm{1}\:\:{i}\:{dint}\:{get}\:{a} \\ $$$${correct}\:{answer},\:\:{please}\:{help} \\ $$$${error}-{freeing}\:{it}.\:\left(\mathcal{T}{hanks}!\right) \\ $$

Commented by MJS_new last updated on 04/Jan/21

after substituting x=(k+1)(p+q) I don′t get  your next equation.    p, q are given ⇒ from the moment you set  3kpq=1 also k is given ⇒ x is given

$$\mathrm{after}\:\mathrm{substituting}\:{x}=\left({k}+\mathrm{1}\right)\left({p}+{q}\right)\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{get} \\ $$$$\mathrm{your}\:\mathrm{next}\:\mathrm{equation}. \\ $$$$ \\ $$$${p},\:{q}\:\mathrm{are}\:\mathrm{given}\:\Rightarrow\:\mathrm{from}\:\mathrm{the}\:\mathrm{moment}\:\mathrm{you}\:\mathrm{set} \\ $$$$\mathrm{3}{kpq}=\mathrm{1}\:\mathrm{also}\:{k}\:\mathrm{is}\:\mathrm{given}\:\Rightarrow\:{x}\:\mathrm{is}\:\mathrm{given} \\ $$

Commented by ajfour last updated on 04/Jan/21

because we put    3kpq=1  and use the equation, so we get  p^3 +q^3 =(c/(2(1+k^3 )))  ⇒  if we give a value to k then  x=(1+k)(p+q)   is obtained  in accordance with the eq.    x^3 =x+c  ■

$${because}\:{we}\:{put}\:\:\:\:\mathrm{3}{kpq}=\mathrm{1} \\ $$$${and}\:{use}\:{the}\:{equation},\:{so}\:{we}\:{get} \\ $$$${p}^{\mathrm{3}} +{q}^{\mathrm{3}} =\frac{{c}}{\mathrm{2}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)} \\ $$$$\Rightarrow\:\:{if}\:{we}\:{give}\:{a}\:{value}\:{to}\:{k}\:{then} \\ $$$${x}=\left(\mathrm{1}+{k}\right)\left({p}+{q}\right)\:\:\:{is}\:{obtained} \\ $$$${in}\:{accordance}\:{with}\:{the}\:{eq}. \\ $$$$\:\:{x}^{\mathrm{3}} ={x}+{c}\:\:\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com