Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128048 by bramlexs22 last updated on 04/Jan/21

 Σ_(n=0) ^∞  (((−1)^n )/(8n+3)) =?

$$\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{8n}+\mathrm{3}}\:=? \\ $$

Answered by Olaf last updated on 04/Jan/21

L(λ,α,s) = Σ_(n=0) ^∞ (e^(2iπλn) /((n+α)^s )) or Lerch(λ,α,s)  (zeta Lerch function)  Let S = Σ_(n=0) ^∞ (((−1)^n )/(8n+3))  S = (1/8)Σ_(n=0) ^∞ (e^(iπn) /((n+(3/8))^1 )) = (1/8)L((1/2),(3/8),1)  We have too :  Φ(z,s,α) = Σ_(n=0) ^∞ (z^n /((n+α)^s )) or LerchPhi(z,s,α)  (transcendent Lerch function)  S = (1/8)Σ_(n=0) ^∞ (((−1)^n )/((n+(3/8))^1 )) = (1/8)Φ(−1,1,(3/8))  S ≈ 0,2738982192

$$\mathrm{L}\left(\lambda,\alpha,{s}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{\mathrm{2}{i}\pi\lambda{n}} }{\left({n}+\alpha\right)^{{s}} }\:\mathrm{or}\:\mathrm{Lerch}\left(\lambda,\alpha,{s}\right) \\ $$$$\left(\mathrm{zeta}\:\mathrm{Lerch}\:\mathrm{function}\right) \\ $$$$\mathrm{Let}\:\mathrm{S}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}+\mathrm{3}} \\ $$$$\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{8}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{{i}\pi{n}} }{\left({n}+\frac{\mathrm{3}}{\mathrm{8}}\right)^{\mathrm{1}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}\mathrm{L}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{8}},\mathrm{1}\right) \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{too}\:: \\ $$$$\Phi\left({z},{s},\alpha\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{z}^{{n}} }{\left({n}+\alpha\right)^{{s}} }\:\mathrm{or}\:\mathrm{LerchPhi}\left({z},{s},\alpha\right) \\ $$$$\left(\mathrm{transcendent}\:\mathrm{Lerch}\:\mathrm{function}\right) \\ $$$$\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{8}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\frac{\mathrm{3}}{\mathrm{8}}\right)^{\mathrm{1}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}\Phi\left(−\mathrm{1},\mathrm{1},\frac{\mathrm{3}}{\mathrm{8}}\right) \\ $$$$\mathrm{S}\:\approx\:\mathrm{0},\mathrm{2738982192} \\ $$

Commented by bramlexs22 last updated on 04/Jan/21

I just found out about the lerch zeta function

Commented by bramlexs22 last updated on 04/Jan/21

how about Σ_(n=0) ^∞  (((−1)^n )/(8n+5)) sir ?

$$\mathrm{how}\:\mathrm{about}\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{8n}+\mathrm{5}}\:\mathrm{sir}\:? \\ $$

Commented by Olaf last updated on 04/Jan/21

Σ_(n=0) ^∞ (((−1)^n )/(8n+5)) = (1/8)LerchPhi(−1,1,(5/8))  ≈ 0,1511562039

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}+\mathrm{5}}\:=\:\frac{\mathrm{1}}{\mathrm{8}}\mathrm{LerchPhi}\left(−\mathrm{1},\mathrm{1},\frac{\mathrm{5}}{\mathrm{8}}\right) \\ $$$$\approx\:\mathrm{0},\mathrm{1511562039} \\ $$

Commented by bramlexs22 last updated on 04/Jan/21

sir how you get ≈0.1511562039 ?  by software sir or calculator?

$$\mathrm{sir}\:\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\approx\mathrm{0}.\mathrm{1511562039}\:? \\ $$$$\mathrm{by}\:\mathrm{software}\:\mathrm{sir}\:\mathrm{or}\:\mathrm{calculator}? \\ $$

Answered by mindispower last updated on 04/Jan/21

=Σ(1/(16(n+(3/(16)))))−(1/(16(n+((11)/(16)))))  =Σ(2/(256(n+(3/(16)))(n+((11)/(16)))))  =(1/(16))(Ψ((3/(16)))−Ψ(((11)/(16))))  4lose  2nd way ∫_0 ^1 x^2 (−x^8 )^n dx=(((−1)^n )/(8n+1))dx  just using basic results Σ(−z)^n =(1/(1+z))  and Z^n +1=0⇒Z=e^(i(((2k+1)/n))π)   ⇒Σ_(n≥0) ∫_0 ^1 x^2 .(−x^8 )^n dx=Σ_(n≥0) (((−1)^n )/(8n+3))  ⇔∫_0 ^1 (x^2 /(1+x^8 ))dx=Σ_(n≥0) (((−1)^n )/(8n+3))  x^8 +1=Π_(k=0) ^7 (X−e^(i((((2k+1)π)/8)))) )  =Π_(k=0) ^3 (X^2 −2cos(((2k+1)/8)π)X+1)  decomposition we get elementry ∫(dx/(X^2 +aX+1))  find value of integrals

$$=\Sigma\frac{\mathrm{1}}{\mathrm{16}\left({n}+\frac{\mathrm{3}}{\mathrm{16}}\right)}−\frac{\mathrm{1}}{\mathrm{16}\left({n}+\frac{\mathrm{11}}{\mathrm{16}}\right)} \\ $$$$=\Sigma\frac{\mathrm{2}}{\mathrm{256}\left({n}+\frac{\mathrm{3}}{\mathrm{16}}\right)\left({n}+\frac{\mathrm{11}}{\mathrm{16}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\left(\Psi\left(\frac{\mathrm{3}}{\mathrm{16}}\right)−\Psi\left(\frac{\mathrm{11}}{\mathrm{16}}\right)\right) \\ $$$$\mathrm{4}{lose} \\ $$$$\mathrm{2}{nd}\:{way}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(−{x}^{\mathrm{8}} \right)^{{n}} {dx}=\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}+\mathrm{1}}{dx} \\ $$$${just}\:{using}\:{basic}\:{results}\:\Sigma\left(−{z}\right)^{{n}} =\frac{\mathrm{1}}{\mathrm{1}+{z}} \\ $$$${and}\:{Z}^{{n}} +\mathrm{1}=\mathrm{0}\Rightarrow{Z}={e}^{{i}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\right)\pi} \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} .\left(−{x}^{\mathrm{8}} \right)^{{n}} {dx}=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}+\mathrm{3}} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx}=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}+\mathrm{3}} \\ $$$${x}^{\mathrm{8}} +\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left({X}−{e}^{\left.{i}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{8}}\right)\right)} \right) \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\prod}}\left({X}^{\mathrm{2}} −\mathrm{2}{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{8}}\pi\right){X}+\mathrm{1}\right) \\ $$$${decomposition}\:{we}\:{get}\:{elementry}\:\int\frac{{dx}}{{X}^{\mathrm{2}} +{aX}+\mathrm{1}} \\ $$$${find}\:{value}\:{of}\:{integrals} \\ $$

Answered by Dwaipayan Shikari last updated on 04/Jan/21

Σ_(n=0) ^∞ (((−1)^n )/(8n+3))=∫_0 ^1 Σ^∞ (−1)^n x^(8n+2) dx  =∫_0 ^1 (x^2 /(1+x^8 ))dx   we can solve this After decomposing

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}+\mathrm{3}}=\int_{\mathrm{0}} ^{\mathrm{1}} \overset{\infty} {\sum}\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{8}{n}+\mathrm{2}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx}\:\:\:{we}\:{can}\:{solve}\:{this}\:{After}\:{decomposing} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com