All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 128057 by bramlexs22 last updated on 04/Jan/21
∫01∫0111−xy2dxdy=?
Answered by liberty last updated on 04/Jan/21
11−xy2=∑∞m=0(xy2)mI=∫01∫0111−xy2dxdy=∑∞m=0∫01xmdx∫01y2mdy=∑∞m=0xm+1m+1]01.y2m+12m+1]01=∑∞m=01(m+1)(2m+1)=∑∞k=11k(2k−1);k=m+1=2∑∞k=1(12k−1−12k)=2∑∞i=1(−1)i−1i=2ln(2)
Answered by Olaf last updated on 04/Jan/21
Ω=∫01∫01dxdy1−xy2Ω=∫0112x∫01[x1+xy+x1−xy]dydxΩ=∫0112x[ln(1+xy1−xy)]01dxΩ=∫01ln(1+x1−x)2xdxΩ=∫01ln(1+u1−u)duΩ=[(1+u)ln(1+u)+(1−u)ln(1−u)]01Ω=2ln2
Answered by mathmax by abdo last updated on 04/Jan/21
∫01∫0111−xy2dxdy=∫01(∫01dy1−xy2)dxwehave∫01dy1−xy2=∫01xy(1−xy)(1+xy)=12∫01(11−xy+11+xy)dy=−12x[ln∣1−xy∣]y=01+12x[ln∣1+xy∣]y=01=12xln(1+x)−12xln(1−x)=12xln(1+x1−x)⇒I=12∫011xln(1+x1−x)dx=x=t12∫011tln(1+t1−t)(2t)dt=∫01ln(1+t)dt(→1+t=u)−∫01ln(1−t)dt(→1−t=v)=∫12lnudu−∫10lnv(−dv)=∫12lnudu−∫01lnvdv=[ulnu−u]12−[vlnv−v]01=2ln2−2+1−(−1)=2ln2−2+2⇒I=2ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com