Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 128068 by benjo_mathlover last updated on 04/Jan/21

 Given 25x^2 −30x+7=0 has the  roots are cos α and cos β. If cos α−cos β>0  then the value of tan (((α+β)/2)).tan (((α−β)/2)) =?

Given25x230x+7=0hasthe rootsarecosαandcosβ.Ifcosαcosβ>0 thenthevalueoftan(α+β2).tan(αβ2)=?

Answered by bemath last updated on 04/Jan/21

 let ((α+β)/2)=x ∧ ((α−β)/2)=y  (i) tan x.tan y = ((2sin xsin y)/(2cos xcos y))     = ((cos (x−y)−cos (x+y))/(cos (x+y)+cos (x−y)))   = ((cos β−cos α)/(cos α+cos β)) = ((cos β−cos α)/(((6/5))))   = −(5/6)(√((cosα−cos β)^2  ))   =−(5/6)(√((cos α+cos β)^2 −4cos αcos β))   =−(5/6) (√(((36)/(25))−((28)/(25)))) = −(5/6)×((2(√2))/5)   =−((√2)/3)

letα+β2=xαβ2=y (i)tanx.tany=2sinxsiny2cosxcosy =cos(xy)cos(x+y)cos(x+y)+cos(xy) =cosβcosαcosα+cosβ=cosβcosα(65) =56(cosαcosβ)2 =56(cosα+cosβ)24cosαcosβ =5636252825=56×225 =23

Answered by Dwaipayan Shikari last updated on 04/Jan/21

cosα+cosβ=((30)/(25))⇒cosα−cosβ=±(√((6^2 /5^2 )−((28)/(25))))=(√(8/(25)))  cosαcosβ=(7/(25))  tan(((α+β)/2))tan(((α−β)/2))=((cosβ−cosα)/(cosβ+cosα))=−(5/6).((2(√2))/5)=−((√2)/3)

cosα+cosβ=3025cosαcosβ=±62522825=825 cosαcosβ=725 tan(α+β2)tan(αβ2)=cosβcosαcosβ+cosα=56.225=23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com