All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 128079 by liberty last updated on 04/Jan/21
Ω=∫ln(x+x2+a2)dx
Answered by bemath last updated on 04/Jan/21
Ω=xln(x+x2+a2)−∫x(1+xx2+a2)x+x2+a2dxΩ=xln(x+x2+a2)+1a2∫x(x−x2+a2)(x+x2+a2x2+a2)dxΩ=xln(x+x2+a2)+1a2∫x(−a2)x2+a2dxΩ=xln(x+x2+a2)−12∫d(x2+a2)x2+a2Ω=xln(x+x2+a2)−x2+a2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com