Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 128080 by mohammad17 last updated on 04/Jan/21

Answered by mathmax by abdo last updated on 04/Jan/21

z^4 −1=(√3)i ⇒z^4  =1+(√3)i =2((1/2)+i((√3)/2))=2e^((iπ)/3)  let z =re^(iθ)    z^4  =1+(√3)i ⇒r^4  e^(4iθ)  =2e^(i(π/3)+2ikπ)  ⇒r=^4 (√2) and 4θ  =(π/3)+2kπ ⇒  θ=(π/(12))+((kπ)/2) so the roots are z_k =^4 (√2) e^(i((π/(12))+((kπ)/2)))   with k∈[[0,3]]  z_0  +z_2 =^4 (√2){ e^((iπ)/(12))   +e^((iπ)/(12))  .e^(iπ) } =^4 (√2){e^((iπ)/(12)) −e^((iπ)/(12)) }=0  z_1  +z_3 =^4 (√2){e^((iπ)/(12)) .e^((iπ)/2)  +e^((iπ)/(12))  .e^(i((3π)/2)) }  =^4 (√2){i e^((iπ)/(12))  −ie^((iπ)/(12)) } =0

$$\mathrm{z}^{\mathrm{4}} −\mathrm{1}=\sqrt{\mathrm{3}}\mathrm{i}\:\Rightarrow\mathrm{z}^{\mathrm{4}} \:=\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}\:=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2e}^{\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\mathrm{let}\:\mathrm{z}\:=\mathrm{re}^{\mathrm{i}\theta} \: \\ $$$$\mathrm{z}^{\mathrm{4}} \:=\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}\:\Rightarrow\mathrm{r}^{\mathrm{4}} \:\mathrm{e}^{\mathrm{4i}\theta} \:=\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}+\mathrm{2ik}\pi} \:\Rightarrow\mathrm{r}=^{\mathrm{4}} \sqrt{\mathrm{2}}\:\mathrm{and}\:\mathrm{4}\theta\:\:=\frac{\pi}{\mathrm{3}}+\mathrm{2k}\pi\:\Rightarrow \\ $$$$\theta=\frac{\pi}{\mathrm{12}}+\frac{\mathrm{k}\pi}{\mathrm{2}}\:\mathrm{so}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{z}_{\mathrm{k}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{\mathrm{12}}+\frac{\mathrm{k}\pi}{\mathrm{2}}\right)} \:\:\mathrm{with}\:\mathrm{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right] \\ $$$$\mathrm{z}_{\mathrm{0}} \:+\mathrm{z}_{\mathrm{2}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\left\{\:\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} \:\:+\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} \:.\mathrm{e}^{\mathrm{i}\pi} \right\}\:=^{\mathrm{4}} \sqrt{\mathrm{2}}\left\{\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} −\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} \right\}=\mathrm{0} \\ $$$$\mathrm{z}_{\mathrm{1}} \:+\mathrm{z}_{\mathrm{3}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\left\{\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} .\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}}} \:+\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} \:.\mathrm{e}^{\mathrm{i}\frac{\mathrm{3}\pi}{\mathrm{2}}} \right\}\:\:=^{\mathrm{4}} \sqrt{\mathrm{2}}\left\{\mathrm{i}\:\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} \:−\mathrm{ie}^{\frac{\mathrm{i}\pi}{\mathrm{12}}} \right\}\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com