Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 128106 by bemath last updated on 04/Jan/21

 yy′ + b(x−a)= ((ay^2 )/(1+x^2 ))

$$\:\mathrm{yy}'\:+\:\mathrm{b}\left(\mathrm{x}−\mathrm{a}\right)=\:\frac{\mathrm{ay}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\: \\ $$

Commented by mr W last updated on 05/Jan/21

once i asked this question due to  Q127997, but then i could solve it myself  and therefore have deleted the post.  my post existed only for a short time.  thank you that you have noticed my   post nevertheless and restored the  question here!  i enjoyed that i could solve  Q127997 completely. please check out  the solution there, comments are  welcome!

$${once}\:{i}\:{asked}\:{this}\:{question}\:{due}\:{to} \\ $$$${Q}\mathrm{127997},\:{but}\:{then}\:{i}\:{could}\:{solve}\:{it}\:{myself} \\ $$$${and}\:{therefore}\:{have}\:{deleted}\:{the}\:{post}. \\ $$$${my}\:{post}\:{existed}\:{only}\:{for}\:{a}\:{short}\:{time}. \\ $$$${thank}\:{you}\:{that}\:{you}\:{have}\:{noticed}\:{my}\: \\ $$$${post}\:{nevertheless}\:{and}\:{restored}\:{the} \\ $$$${question}\:{here}! \\ $$$${i}\:{enjoyed}\:{that}\:{i}\:{could}\:{solve} \\ $$$${Q}\mathrm{127997}\:{completely}.\:{please}\:{check}\:{out} \\ $$$${the}\:{solution}\:{there},\:{comments}\:{are} \\ $$$${welcome}! \\ $$

Answered by liberty last updated on 04/Jan/21

 yy′+b(x−a)=((ay^2 )/(1+x^2 ))   yy′−((ay^2 )/(1+x^2 )) = b(a−x)   let y^2  = v ⇒2yy′ = v′ ; yy′ = ((v′)/2)  ⇒ ((v′)/2)−(a/(1+x^2 )).v = b(a−x) ; v′−((2a)/(1+x^2 )).v=2b(a−x)  put IF μ = e^(−∫ ((2a)/(1+x^2 )) dx) = e^(−2a .arctan x)   we get v = ((∫2b(a−x)e^(−2a.arctan x)  dx+C)/e^(−2.arctan x) )   ∴ y^2 = C.e^(2a.arctan x)  + 2b∫ (a−x).e^(−2a.arctan x)  dx

$$\:\mathrm{yy}'+\mathrm{b}\left(\mathrm{x}−\mathrm{a}\right)=\frac{\mathrm{ay}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\:\mathrm{yy}'−\frac{\mathrm{ay}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{b}\left(\mathrm{a}−\mathrm{x}\right) \\ $$$$\:\mathrm{let}\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{v}\:\Rightarrow\mathrm{2yy}'\:=\:\mathrm{v}'\:;\:\mathrm{yy}'\:=\:\frac{\mathrm{v}'}{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{\mathrm{v}'}{\mathrm{2}}−\frac{\mathrm{a}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\mathrm{v}\:=\:\mathrm{b}\left(\mathrm{a}−\mathrm{x}\right)\:;\:\mathrm{v}'−\frac{\mathrm{2a}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\mathrm{v}=\mathrm{2b}\left(\mathrm{a}−\mathrm{x}\right) \\ $$$$\mathrm{put}\:\mathrm{IF}\:\mu\:=\:\mathrm{e}^{−\int\:\frac{\mathrm{2a}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}} =\:\mathrm{e}^{−\mathrm{2a}\:.\mathrm{arctan}\:\mathrm{x}} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{v}\:=\:\frac{\int\mathrm{2b}\left(\mathrm{a}−\mathrm{x}\right)\mathrm{e}^{−\mathrm{2a}.\mathrm{arctan}\:\mathrm{x}} \:\mathrm{dx}+\mathrm{C}}{\mathrm{e}^{−\mathrm{2}.\mathrm{arctan}\:\mathrm{x}} } \\ $$$$\:\therefore\:\mathrm{y}^{\mathrm{2}} =\:\mathrm{C}.\mathrm{e}^{\mathrm{2a}.\mathrm{arctan}\:\mathrm{x}} \:+\:\mathrm{2b}\int\:\left(\mathrm{a}−\mathrm{x}\right).\mathrm{e}^{−\mathrm{2a}.\mathrm{arctan}\:\mathrm{x}} \:\mathrm{dx}\: \\ $$

Commented by mr W last updated on 05/Jan/21

for complete solution see Q127997.

$${for}\:{complete}\:{solution}\:{see}\:{Q}\mathrm{127997}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com