Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 12814 by syambabu087@gmail.com last updated on 02/May/17

Commented by FilupS last updated on 02/May/17

x(y^n −y)+(dy/dx)=0  (dy/dx)=−x(y^n −y)  (1/(y^n −y)) (dy/dx)=−x  ∫(1/(y^n −y)) (dy/dx)dx=−∫xdx  ∫(1/(y^n (1−y^(1−n) )))dy=−∫xdx  u=1−y^(1−n)   ⇒  du=(n−1)y^(−n) dy  (1/(n−1))∫(1/u)du=−∫xdx  (1/(n−1))ln(u)=−(1/2)x^2 +C  (1/(n−1))ln(1−y^(1−n) )=−(1/2)x^2 +C  ln(1−y^(1−n) )=(1−n)(1/2)x^2 +C  1−y^(1−n) =e^((1/2)(1−n)x^2 ) C              e^(x+C) =e^x C  y^(1−n) =1−e^((1/2)(1−n)x^2 ) C  y(x)=(1−e^((1/2)(1−n)x^2 ) C)^(1/(1−n))      y(0)=2  ∴(1−e^((1/2)(1−n)0^2 ) C)^(1/(1−n)) =2  (1−C)^(1/(1−n)) =2  1−C=2^(1−n)   C=1−2^(1−n)      ∴y(x)=(1−(1−2^(1−n) )e^((1/2)(1−n)x^2 ) )^(1/(1−n))

x(yny)+dydx=0dydx=x(yny)1ynydydx=x1ynydydxdx=xdx1yn(1y1n)dy=xdxu=1y1ndu=(n1)yndy1n11udu=xdx1n1ln(u)=12x2+C1n1ln(1y1n)=12x2+Cln(1y1n)=(1n)12x2+C1y1n=e12(1n)x2Cex+C=exCy1n=1e12(1n)x2Cy(x)=(1e12(1n)x2C)11ny(0)=2(1e12(1n)02C)11n=2(1C)11n=21C=21nC=121ny(x)=(1(121n)e12(1n)x2)11n

Commented by mrW1 last updated on 02/May/17

in your answer you have  x(y^n −y)+(dy/dx)=0    but in the question it is  x(y^n +y)+(dy/dx)=0

inyouransweryouhavex(yny)+dydx=0butinthequestionitisx(yn+y)+dydx=0

Answered by sma3l2996 last updated on 03/May/17

(y^n +y)x=−(dy/dx)⇔−xdx=(dy/(y^n +y))  ((−1)/2)x^2 +c=∫(dy/(y(y^(n−1) +1)))  u=(1/(y^(n−1) +1))⇒du=((−(n−1)y^(n−2) )/((1+y^(n−1) )^2 ))dy=−(((n−1)y^(n−1) )/(y(y^(n−1) +1)^2 ))dy  y^(n−1) =−((u−1)/u)  du=(((n−1)×u)/(y(y^(n−1) +1)))×((u−1)/u)dy=(n−1)((u−1)/(y(y^(n−1) +1)))dy  (dy/(y(y^(n−1) +1)))=(du/((n−1)(u−1)))  ((−1)/2)x^2 +c=(1/(n−1))∫(du/(u−1))=(1/(n−1))ln(u−1)+a  −(1/2)x^2 +c_1 =(1/(n−1))ln((1/(y^(n−1) +1))−1)  (1/(y^(n−1) +1))−1=e^(−((n−1)/2)x^2 +(n−1)c_1 ) =C×e^(−((n−1)/2)x^2 )   (y^(n−1) +1)(C×e^(−((n−1)/2)x^2 ) +1)=1  y^(n−1) =(1/(C×e^(−((n−1)/2)x^2 ) +1))−1=−((C×e^(−((n−1)/2)x^2 ) )/(C×e^(−((n−1)/2)x^2 ) +1))  y(0)=2    −(C/(C+1))=2^(n−1) ⇔C=−(2^(n−1) /(2^(n−1) +1))  y^(n−1) =−(C/(e^(((n−1)/2)x^2 ) (C×e^(−((n−1)/2)x^2 ) +1)))  =(2^(n−1) /((2^(n−1) +1)e^(((n−1)/2)x^2 ) (((−2^(n−1) )/((2^(n−1) +1)e^(((n−1)/2)x^2 ) ))+1)))=(2^(n−1) /((2^(n−1) +1)e^(((n−1)/2)x^2 ) −2^(n−1) ))  y(x)=(2/(((2^(n−1) +1)e^(((n−1)/2)x^2 ) −2^(n−1) )^(1/(n−1)) ))

(yn+y)x=dydxxdx=dyyn+y12x2+c=dyy(yn1+1)u=1yn1+1du=(n1)yn2(1+yn1)2dy=(n1)yn1y(yn1+1)2dyyn1=u1udu=(n1)×uy(yn1+1)×u1udy=(n1)u1y(yn1+1)dydyy(yn1+1)=du(n1)(u1)12x2+c=1n1duu1=1n1ln(u1)+a12x2+c1=1n1ln(1yn1+11)1yn1+11=en12x2+(n1)c1=C×en12x2(yn1+1)(C×en12x2+1)=1yn1=1C×en12x2+11=C×en12x2C×en12x2+1y(0)=2CC+1=2n1C=2n12n1+1yn1=Cen12x2(C×en12x2+1)=2n1(2n1+1)en12x2(2n1(2n1+1)en12x2+1)=2n1(2n1+1)en12x22n1y(x)=2((2n1+1)en12x22n1)1n1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com