All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 12814 by syambabu087@gmail.com last updated on 02/May/17
Commented by FilupS last updated on 02/May/17
x(yn−y)+dydx=0dydx=−x(yn−y)1yn−ydydx=−x∫1yn−ydydxdx=−∫xdx∫1yn(1−y1−n)dy=−∫xdxu=1−y1−n⇒du=(n−1)y−ndy1n−1∫1udu=−∫xdx1n−1ln(u)=−12x2+C1n−1ln(1−y1−n)=−12x2+Cln(1−y1−n)=(1−n)12x2+C1−y1−n=e12(1−n)x2Cex+C=exCy1−n=1−e12(1−n)x2Cy(x)=(1−e12(1−n)x2C)11−ny(0)=2∴(1−e12(1−n)02C)11−n=2(1−C)11−n=21−C=21−nC=1−21−n∴y(x)=(1−(1−21−n)e12(1−n)x2)11−n
Commented by mrW1 last updated on 02/May/17
inyouransweryouhavex(yn−y)+dydx=0butinthequestionitisx(yn+y)+dydx=0
Answered by sma3l2996 last updated on 03/May/17
(yn+y)x=−dydx⇔−xdx=dyyn+y−12x2+c=∫dyy(yn−1+1)u=1yn−1+1⇒du=−(n−1)yn−2(1+yn−1)2dy=−(n−1)yn−1y(yn−1+1)2dyyn−1=−u−1udu=(n−1)×uy(yn−1+1)×u−1udy=(n−1)u−1y(yn−1+1)dydyy(yn−1+1)=du(n−1)(u−1)−12x2+c=1n−1∫duu−1=1n−1ln(u−1)+a−12x2+c1=1n−1ln(1yn−1+1−1)1yn−1+1−1=e−n−12x2+(n−1)c1=C×e−n−12x2(yn−1+1)(C×e−n−12x2+1)=1yn−1=1C×e−n−12x2+1−1=−C×e−n−12x2C×e−n−12x2+1y(0)=2−CC+1=2n−1⇔C=−2n−12n−1+1yn−1=−Cen−12x2(C×e−n−12x2+1)=2n−1(2n−1+1)en−12x2(−2n−1(2n−1+1)en−12x2+1)=2n−1(2n−1+1)en−12x2−2n−1y(x)=2((2n−1+1)en−12x2−2n−1)1n−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com