Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 128182 by BHOOPENDRA last updated on 05/Jan/21

Commented by BHOOPENDRA last updated on 05/Jan/21

find laplace transformation?

$${find}\:{laplace}\:{transformation}? \\ $$

Answered by mathmax by abdo last updated on 05/Jan/21

2) { ((f(t)=(t−2)^2  if t>2)),((o if t<2 ⇒L(f(t)) =∫_0 ^∞  e^(−tx) (x−2)^2 dx)) :}  =∫_2 ^(+∞)  (x−2)^2  e^(−tx)  dx =[−(1/t)e^(−tx)  (x−2)^2 ]_(x=2) ^∞ +2∫_2 ^(+∞) (1/t)e^(−tx) (x−2)dx  =(2/t)∫_2 ^(+∞)  e^(−tx) (x−2)dx   =(2/t){  [−(1/t)e^(−tx)  (x−2)]_2 ^∞ +∫_2 ^∞  (1/t)e^(−tx) dx}  =(2/t^2 )∫_2 ^(+∞)  e^(−tx) dx =(2/t^2 )[−(1/t)e^(−tx) ]_2 ^∞   =(2/t^2 )((e^(−2t) /t)) =((2e^(−2t) )/t^3 )

$$\left.\mathrm{2}\right)\begin{cases}{\mathrm{f}\left(\mathrm{t}\right)=\left(\mathrm{t}−\mathrm{2}\right)^{\mathrm{2}} \:\mathrm{if}\:\mathrm{t}>\mathrm{2}}\\{\mathrm{o}\:\mathrm{if}\:\mathrm{t}<\mathrm{2}\:\Rightarrow\mathrm{L}\left(\mathrm{f}\left(\mathrm{t}\right)\right)\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{tx}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \mathrm{dx}}\end{cases} \\ $$$$=\int_{\mathrm{2}} ^{+\infty} \:\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{tx}} \:\mathrm{dx}\:=\left[−\frac{\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{tx}} \:\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \right]_{\mathrm{x}=\mathrm{2}} ^{\infty} +\mathrm{2}\int_{\mathrm{2}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{tx}} \left(\mathrm{x}−\mathrm{2}\right)\mathrm{dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{t}}\int_{\mathrm{2}} ^{+\infty} \:\mathrm{e}^{−\mathrm{tx}} \left(\mathrm{x}−\mathrm{2}\right)\mathrm{dx}\: \\ $$$$=\frac{\mathrm{2}}{\mathrm{t}}\left\{\:\:\left[−\frac{\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{tx}} \:\left(\mathrm{x}−\mathrm{2}\right)\right]_{\mathrm{2}} ^{\infty} +\int_{\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{tx}} \mathrm{dx}\right\} \\ $$$$=\frac{\mathrm{2}}{\mathrm{t}^{\mathrm{2}} }\int_{\mathrm{2}} ^{+\infty} \:\mathrm{e}^{−\mathrm{tx}} \mathrm{dx}\:=\frac{\mathrm{2}}{\mathrm{t}^{\mathrm{2}} }\left[−\frac{\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{tx}} \right]_{\mathrm{2}} ^{\infty} \\ $$$$=\frac{\mathrm{2}}{\mathrm{t}^{\mathrm{2}} }\left(\frac{\mathrm{e}^{−\mathrm{2t}} }{\mathrm{t}}\right)\:=\frac{\mathrm{2e}^{−\mathrm{2t}} }{\mathrm{t}^{\mathrm{3}} } \\ $$$$ \\ $$

Commented by BHOOPENDRA last updated on 06/Jan/21

question no.third sir ?  tq for the second one

$${question}\:{no}.{third}\:{sir}\:?\:\:{tq}\:{for}\:{the}\:{second}\:{one} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com