All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 12822 by fawadalamawan@gmail.com last updated on 02/May/17
provebycontradiction9+133isirrational
Answered by mrW1 last updated on 03/May/17
letusassume9+133isrational,.i.e.thereexistintegernumbersaandb,b≠0,9+133=ab⇒3=a−9b13=integerinteger=rationalthatistosay:if9+133isassumedtoberational,then3isalsorational,butthisisnottrue,therefore9+133isirrational.
Commented by Joel577 last updated on 04/May/17
howtoprovethat3isirrational?
Commented by mrW1 last updated on 04/May/17
assume3wererational,i.e.3=ab,andabcannotbefurthersimplified,i.e.aandbehavenocommonfactor.3=a2b2a2=3b2ifbiseven,i.e.b=2na2=3×4n2=even⇒a=even=2m⇒aandbhavecommonfactor2,abcanbefurthersimplifiedtomn,⇒bisnoteven!ifbisodd,i.e.b=2n+1b2isalsoodd,3b2isalsoodd,i.e.a2isodd,amustbealsoadd,i.e.a=2m+1(2m+1)2=3(2n+1)24m2+4m+1=12n2+12n+32(m2+m)=6(n2+n)+1even=odd⇒bisnotodd.⇒thereexistnointegeraandbtofulfill3=ab,⇒3isirrational
Terms of Service
Privacy Policy
Contact: info@tinkutara.com