Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 128236 by Dwaipayan Shikari last updated on 05/Jan/21

(1/6)Σ_p ^∞ ((logp)/(p^2 −1))=((log1)/π^2 )+((log2)/(4π^2 ))+((log3)/(9π^2 ))+...   (p=prime)

$$\frac{\mathrm{1}}{\mathrm{6}}\underset{{p}} {\overset{\infty} {\sum}}\frac{{logp}}{{p}^{\mathrm{2}} −\mathrm{1}}=\frac{{log}\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{{log}\mathrm{2}}{\mathrm{4}\pi^{\mathrm{2}} }+\frac{{log}\mathrm{3}}{\mathrm{9}\pi^{\mathrm{2}} }+...\:\:\:\left({p}={prime}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 05/Jan/21

ζ(s)=Π_p ^∞ (1−(1/p^s ))^(−1)   log(ζ(s))=−Σ_p ^∞ log(1−(1/p^s ))  ((ζ′(s))/(ζ(s)))=−Σ^∞ ((p^(−s) log(p))/(1−(1/p^s )))⇒ζ′(s)=ζ(s)Σ_p ^∞ ((logp)/(1−p^s ))  ζ′(s)=−Σ^∞ ((logn)/n^s )  ⇒((log1)/1)+((log2)/2^2 )+((log3)/3^2 )+...=(π^2 /6)Σ_p ^∞ ((logp)/(p^2 −1))  ⇒(1/6)Σ_p ^∞ ((logp)/(p^2 −1))=((log1)/π^2 )+((log2)/(4π^2 ))+...

$$\zeta\left({s}\right)=\underset{{p}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{p}^{{s}} }\right)^{−\mathrm{1}} \\ $$$${log}\left(\zeta\left({s}\right)\right)=−\underset{{p}} {\overset{\infty} {\sum}}{log}\left(\mathrm{1}−\frac{\mathrm{1}}{{p}^{{s}} }\right) \\ $$$$\frac{\zeta'\left({s}\right)}{\zeta\left({s}\right)}=−\overset{\infty} {\sum}\frac{{p}^{−{s}} {log}\left({p}\right)}{\mathrm{1}−\frac{\mathrm{1}}{{p}^{{s}} }}\Rightarrow\zeta'\left({s}\right)=\zeta\left({s}\right)\underset{{p}} {\overset{\infty} {\sum}}\frac{{logp}}{\mathrm{1}−{p}^{{s}} } \\ $$$$\zeta'\left({s}\right)=−\overset{\infty} {\sum}\frac{{logn}}{{n}^{{s}} } \\ $$$$\Rightarrow\frac{{log}\mathrm{1}}{\mathrm{1}}+\frac{{log}\mathrm{2}}{\mathrm{2}^{\mathrm{2}} }+\frac{{log}\mathrm{3}}{\mathrm{3}^{\mathrm{2}} }+...=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\underset{{p}} {\overset{\infty} {\sum}}\frac{{logp}}{{p}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{6}}\underset{{p}} {\overset{\infty} {\sum}}\frac{{logp}}{{p}^{\mathrm{2}} −\mathrm{1}}=\frac{{log}\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{{log}\mathrm{2}}{\mathrm{4}\pi^{\mathrm{2}} }+... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com