Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 128314 by 676597498 last updated on 06/Jan/21

∫_0 ^( ∞) ((sin(px))/( (√x))) dx   ∀p∈R

0sin(px)xdxpR

Answered by Dwaipayan Shikari last updated on 06/Jan/21

∫_0 ^∞ ((sinpx)/( (√x)))dx=2∫_0 ^∞ sinpt^2 dt       x=t^2   =(1/i)∫_0 ^∞ e^(ipt^2 ) −e^(−ipt^2 ) dt              pt^2 =ij    pt^2 =−ig  =(1/(2p))∫_0 ^∞ (((ij)/p))^(−(1/2)) e^(−j) dj+(((−ig)/p))^(−(1/2)) e^(−g) dg  =(1/(2(√p)))Γ((1/2))(e^((π/4)i) +e^(−(π/4)i) )=(√(π/(2p)))

0sinpxxdx=20sinpt2dtx=t2=1i0eipt2eipt2dtpt2=ijpt2=ig=12p0(ijp)12ejdj+(igp)12egdg=12pΓ(12)(eπ4i+eπ4i)=π2p

Answered by mnjuly1970 last updated on 06/Jan/21

solution: Ψ=∫_0 ^( ∞) ((sin(px))/x^(1/2) )dx     Ψ=^(px=ξ) (1/p^(1/2) )∫_0 ^( ∞) ((sin(ξ))/ξ^(1/2) )dξ=           =(1/p^(1/2) ) ∗(π/(2Γ((1/2))sin((π/4)))) =(π/( (√p) 2(√π) ((√2)/2)))    = (π/( (√(2pπ))))  =((√(2pπ))/(2p))=(√(π/(2p)))

solution:Ψ=0sin(px)x12dxΨ=px=ξ1p120sin(ξ)ξ12dξ==1p12π2Γ(12)sin(π4)=πp2π22=π2pπ=2pπ2p=π2p

Terms of Service

Privacy Policy

Contact: info@tinkutara.com