Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128369 by I want to learn more last updated on 06/Jan/21

If   u_1   +  u_2   +  u_3   +  ...  +  u_n    =   2n^2   +  n   is an AP.  Find        u_1   +  u_2   +  u_3   +  ...  +  u_(2n  −  2)   +  u_(2n  −  1)

Ifu1+u2+u3+...+un=2n2+nisanAP.Findu1+u2+u3+...+u2n2+u2n1

Answered by mr W last updated on 06/Jan/21

u_1   +  u_2   +  u_3   +  ...  +  u_(2n  −  2)   +  u_(2n  −  1)   =2(2n−1)^2 +(2n−1)  =(2n−1)(4n−1)  =8n^2 −6n+1

u1+u2+u3+...+u2n2+u2n1=2(2n1)2+(2n1)=(2n1)(4n1)=8n26n+1

Commented by I want to learn more last updated on 06/Jan/21

Thanks sir

Thankssir

Answered by mathmax by abdo last updated on 06/Jan/21

we have u_1 +u_2 +...+u_n =2n^(2 ) +n ⇒   { ((u_1 +u_2 +...+u_n =2n^2  +n)),((u_1 +u_2 +..u_(n−1) =2(n−1)^2  +n−1 ⇒)) :}  u_n =2n^2 +n−2(n−1)^2 −n+1 =2n^2 −2(n^2 −2n+1)+1  =4n−2 +1 =4n−1 so  u_1 +u_2 +....+u_(2n−1) =((2n−1−1+1)/2)(u_1 +u_(2n−1) )  =((2n−1)/2)(3 +4(2n−1)−1) =((2n−1)/2)(3+8n−4−1)  =(((2n−1)(8n−2))/2) =(2n−1)(4n−1)  =8n^2 −2n−4n+1 =8n^2 −6n +1

wehaveu1+u2+...+un=2n2+n{u1+u2+...+un=2n2+nu1+u2+..un1=2(n1)2+n1un=2n2+n2(n1)2n+1=2n22(n22n+1)+1=4n2+1=4n1sou1+u2+....+u2n1=2n11+12(u1+u2n1)=2n12(3+4(2n1)1)=2n12(3+8n41)=(2n1)(8n2)2=(2n1)(4n1)=8n22n4n+1=8n26n+1

Commented by I want to learn more last updated on 07/Jan/21

Thanks sir

Thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com