Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128459 by SLVR last updated on 07/Jan/21

For any complex number z,z^n =z^�  has (n+2) solutions How???

$${For}\:{any}\:{complex}\:{number}\:{z},{z}^{{n}} =\bar {{z}}\:{has}\:\left({n}+\mathrm{2}\right)\:{solutions}\:{How}??? \\ $$

Answered by mr W last updated on 10/Jan/21

let z=r(cos θ+i sin θ)=re^(iθ)   z^n =r^n (cos nθ+i sin nθ)  z^� =r(cos θ−i sin θ)  r=0 is a solution.  for r≠0:  r^n cos nθ=r cos θ ⇒r^(n−1) =((cos θ)/(cos nθ))   ...(1)  r^n sin nθ=−r sin θ ⇒r^(n−1) =−((sin θ)/(sin nθ))   ...(2)  ((cos θ)/(cos nθ))=−((sin θ)/(sin nθ))   sin nθ cos θ+cos nθ sin θ=1  sin (n+1)θ=1  ⇒(n+1)θ=2kπ+(π/2)  ⇒θ=((2kπ)/(n+1))+(π/(2(n+1))) with k=0,1,...,n  i.e. there are n+1 solutions for θ  and therefore for r and therefore  for z.  so totally there are n+2 solutions:  z=0  z_k =r_k (cos θ_k +i sin θ_k )=r_k e^(iθ_k )   with  θ_k =((2kπ)/(n+1))+(π/(2(n+1)))  r_k =(((cos θ_k )/(cos nθ_k )))^(1/(n−1))   and k=0,1,...,n

$${let}\:{z}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)={re}^{{i}\theta} \\ $$$${z}^{{n}} ={r}^{{n}} \left(\mathrm{cos}\:{n}\theta+{i}\:\mathrm{sin}\:{n}\theta\right) \\ $$$$\bar {{z}}={r}\left(\mathrm{cos}\:\theta−{i}\:\mathrm{sin}\:\theta\right) \\ $$$${r}=\mathrm{0}\:{is}\:{a}\:{solution}. \\ $$$${for}\:{r}\neq\mathrm{0}: \\ $$$${r}^{{n}} \mathrm{cos}\:{n}\theta={r}\:\mathrm{cos}\:\theta\:\Rightarrow{r}^{{n}−\mathrm{1}} =\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:{n}\theta}\:\:\:...\left(\mathrm{1}\right) \\ $$$${r}^{{n}} \mathrm{sin}\:{n}\theta=−{r}\:\mathrm{sin}\:\theta\:\Rightarrow{r}^{{n}−\mathrm{1}} =−\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:{n}\theta}\:\:\:...\left(\mathrm{2}\right) \\ $$$$\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:{n}\theta}=−\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:{n}\theta}\: \\ $$$$\mathrm{sin}\:{n}\theta\:\mathrm{cos}\:\theta+\mathrm{cos}\:{n}\theta\:\mathrm{sin}\:\theta=\mathrm{1} \\ $$$$\mathrm{sin}\:\left({n}+\mathrm{1}\right)\theta=\mathrm{1} \\ $$$$\Rightarrow\left({n}+\mathrm{1}\right)\theta=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\theta=\frac{\mathrm{2}{k}\pi}{{n}+\mathrm{1}}+\frac{\pi}{\mathrm{2}\left({n}+\mathrm{1}\right)}\:{with}\:{k}=\mathrm{0},\mathrm{1},...,{n} \\ $$$${i}.{e}.\:{there}\:{are}\:{n}+\mathrm{1}\:{solutions}\:{for}\:\theta \\ $$$${and}\:{therefore}\:{for}\:{r}\:{and}\:{therefore} \\ $$$${for}\:{z}. \\ $$$${so}\:{totally}\:{there}\:{are}\:{n}+\mathrm{2}\:{solutions}: \\ $$$${z}=\mathrm{0} \\ $$$${z}_{{k}} ={r}_{{k}} \left(\mathrm{cos}\:\theta_{{k}} +{i}\:\mathrm{sin}\:\theta_{{k}} \right)={r}_{{k}} {e}^{{i}\theta_{{k}} } \\ $$$${with} \\ $$$$\theta_{{k}} =\frac{\mathrm{2}{k}\pi}{{n}+\mathrm{1}}+\frac{\pi}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$${r}_{{k}} =\sqrt[{{n}−\mathrm{1}}]{\frac{\mathrm{cos}\:\theta_{{k}} }{\mathrm{cos}\:{n}\theta_{{k}} }} \\ $$$${and}\:{k}=\mathrm{0},\mathrm{1},...,{n} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com