Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 128626 by john_santu last updated on 09/Jan/21

 lim_(n→∞) {(2+(√2))^n }=?  { } = fractional

limn{(2+2)n}=?{}=fractional

Commented by liberty last updated on 09/Jan/21

{x} = x−⌊x⌋

{x}=xx

Answered by mnjuly1970 last updated on 09/Jan/21

solution:   t_n :=(2+(√2) )^n +(2−(√2) )^n ∈^(why?) N   because: t_n =Σ_(k=0) ^n { ((n),(k) ) (2)^(n−k) ((√2) )^k (1+(−1)^k )  =Σ_(k=_(k ∈ N_( E) ) 0) ^n { ((n),(k) ) 2^(n−k+(k/2)+1) }  =Σ_(k=_(k∈N_( E) ) 0) { ((n),(k) ) 2^([n+(k/2)+1∈ N]) }∈N    b ut we know: 0<( 2−(√2) )^n <1   ∴ 0< 1−(2−(√(2 )) )^n  <1       lim_(n→∞ ) (1−(2−(√2) )^n )=1    {(2+(√2) )^n }={t_n −(2−(√2) )^n }                             ={t_n −1+1−(2−(√2) )^n }      ∴lim_(n→∞) {(2+(√2) )^n }=1        note:{t_n −1}=0

solution:tn:=(2+2)n+(22)nwhy?Nbecause:tn=nk=0{(nk)(2)nk(2)k(1+(1)k)=nk=kNE0{(nk)2nk+k2+1}=k=kNE0{(nk)2[n+k2+1N]}Nbutweknow:0<(22)n<10<1(22)n<1limn(1(22)n)=1{(2+2)n}={tn(22)n}={tn1+1(22)n}limn{(2+2)n}=1note:{tn1}=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com