Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128633 by Lordose last updated on 09/Jan/21

Ω = ∫_0 ^( (1/3)) x^(2n) ln(1−x)dx

Ω=013x2nln(1x)dx

Answered by mathmax by abdo last updated on 09/Jan/21

let try another way  x=(t/3) ⇒  Ω=∫_0 ^1  ((t/3))^(2n) ln(1−(t/3))(dt/3) =(1/3^(2n+1) )∫_0 ^1  t^(2n) ln(((3−t)/3))dt  =(1/3^(2n+1) ) ∫_0 ^1  t^(2n) ln(3−t)dt−(1/3^(2n+1) )ln(3)[(t^(2n+1) /(2n+1))]_0 ^1   =(1/3^(2n+1) )∫_0 ^1  t^(2n) ln(3−t)dt −((ln3)/((2n+1)3^(2n+1) ))  we have by parts  ∫_0 ^1  t^(2n) ln(3−t)dt =[(t^(2n+1) /(2n+1))ln(3−t)]_0 ^1 −∫_0 ^1 (t^(2n+1) /(2n+1))×((−1)/(3−t))dt  =(1/(2n+1))ln(2)+(1/(2n+1))∫_0 ^1  (t^(2n+1) /(3−t))dt  and  ∫_0 ^1  (t^(2n+1) /(3−t)) dt =_(3−t=u)    −∫_2 ^3   (((3−u)^(2n+1) )/u)(−du)  =−∫_2 ^3    (((u−3)^(2n+1) )/u) du =−∫_2 ^3  ((Σ_(k=0) ^(2n+1)  C_(2n+1) ^k  u^k (−3)^(2n+1−k) )/u)du  =3^(2n+1)   Σ_(k=1) ^(2n+1)  (−3)^(−k)  C_(2n+1) ^k  ∫_2 ^3  u^(k−1)  du −3^(2n+1) ln((3/2))  =3^(2n+1)  Σ_(k=0) ^(2n+1)  (−3)^(−k)  C_(2n+1) ^k  (1/k){ 3^(k−1) −2^(k−1) }−3^(2n+1) ln((3/2))...

lettryanotherwayx=t3Ω=01(t3)2nln(1t3)dt3=132n+101t2nln(3t3)dt=132n+101t2nln(3t)dt132n+1ln(3)[t2n+12n+1]01=132n+101t2nln(3t)dtln3(2n+1)32n+1wehavebyparts01t2nln(3t)dt=[t2n+12n+1ln(3t)]0101t2n+12n+1×13tdt=12n+1ln(2)+12n+101t2n+13tdtand01t2n+13tdt=3t=u23(3u)2n+1u(du)=23(u3)2n+1udu=23k=02n+1C2n+1kuk(3)2n+1kudu=32n+1k=12n+1(3)kC2n+1k23uk1du32n+1ln(32)=32n+1k=02n+1(3)kC2n+1k1k{3k12k1}32n+1ln(32)...

Answered by mathmax by abdo last updated on 09/Jan/21

Ω=∫_0 ^(1/3)  x^(2n) ln(1−x)dx  by parts u^′  =x^(2n) [and v=ln(1−x)  Ω=[(x^(2n+1) /(2n+1))ln(1−x)]_0 ^(1/3) −∫_0 ^(1/3)  (x^(2n+1) /(2n+1))×((−1)/(1−x))dx  =(1/(2n+1(3)^(2n+1) ))ln((2/3))+(1/(2n+1))∫_0 ^(1/3)  (x^(2n+1) /(1−x))dx  but  ∫_0 ^(1/3)  (x^(2n+1) /(1−x))dx =∫_0 ^(1/3)  ((x^(2n+1) −1+1)/(1−x))dx =∫_0 ^(1/3) (((x−1)(1+x+x^2  +...+x^(2n) ))/(1−x))dx  +[−ln(1−x)]_0 ^(1/3)  =−∫_0 ^(1/3) (Σ_(k=0) ^(2n)  x^k )dx−ln((2/3))  =−Σ_(k=0) ^(2n)  [(x^(k+1) /(k+1))]_0 ^(1/3)  −ln2 +ln3  =−Σ_(k=0) ^(2n)  (1/((k+1)3^(k+1) )) +ln3−ln2  rsst to find the value of this serie...

Ω=013x2nln(1x)dxbypartsu=x2n[andv=ln(1x)Ω=[x2n+12n+1ln(1x)]013013x2n+12n+1×11xdx=12n+1(3)2n+1ln(23)+12n+1013x2n+11xdxbut013x2n+11xdx=013x2n+11+11xdx=013(x1)(1+x+x2+...+x2n)1xdx+[ln(1x)]013=013(k=02nxk)dxln(23)=k=02n[xk+1k+1]013ln2+ln3=k=02n1(k+1)3k+1+ln3ln2rssttofindthevalueofthisserie...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com