All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 128633 by Lordose last updated on 09/Jan/21
Ω=∫013x2nln(1−x)dx
Answered by mathmax by abdo last updated on 09/Jan/21
lettryanotherwayx=t3⇒Ω=∫01(t3)2nln(1−t3)dt3=132n+1∫01t2nln(3−t3)dt=132n+1∫01t2nln(3−t)dt−132n+1ln(3)[t2n+12n+1]01=132n+1∫01t2nln(3−t)dt−ln3(2n+1)32n+1wehavebyparts∫01t2nln(3−t)dt=[t2n+12n+1ln(3−t)]01−∫01t2n+12n+1×−13−tdt=12n+1ln(2)+12n+1∫01t2n+13−tdtand∫01t2n+13−tdt=3−t=u−∫23(3−u)2n+1u(−du)=−∫23(u−3)2n+1udu=−∫23∑k=02n+1C2n+1kuk(−3)2n+1−kudu=32n+1∑k=12n+1(−3)−kC2n+1k∫23uk−1du−32n+1ln(32)=32n+1∑k=02n+1(−3)−kC2n+1k1k{3k−1−2k−1}−32n+1ln(32)...
Ω=∫013x2nln(1−x)dxbypartsu′=x2n[andv=ln(1−x)Ω=[x2n+12n+1ln(1−x)]013−∫013x2n+12n+1×−11−xdx=12n+1(3)2n+1ln(23)+12n+1∫013x2n+11−xdxbut∫013x2n+11−xdx=∫013x2n+1−1+11−xdx=∫013(x−1)(1+x+x2+...+x2n)1−xdx+[−ln(1−x)]013=−∫013(∑k=02nxk)dx−ln(23)=−∑k=02n[xk+1k+1]013−ln2+ln3=−∑k=02n1(k+1)3k+1+ln3−ln2rssttofindthevalueofthisserie...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com