Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128636 by john_santu last updated on 09/Jan/21

Solve diopthantine equation    (1/a)+(1/b) = (2/(17)).

Solvediopthantineequation1a+1b=217.

Answered by liberty last updated on 09/Jan/21

⇒ (1/a)+(1/b)=(2/(17)) ; 2ab = 17(a+b)  consider (2a−17)(2b−17)=4ab−34(a+b)+17^2   it follows that 4ab−34(a+b)=0  so we get (2a−17)(2b−17)=17^2   since a and b are positive integer we can   take (i) 2a−17=1 and 2a−17=17^2    which yields (a,b)=(9,103)  (ii) 2a−17=17 and 2a−17=17which yields  (a,b)=(17,17)  (iii) 2a−17=17^2  and 2a−17=1 which yields  (a,b)=(103, 9)  ∴ ≡ solution {(9,103),(17,17),(103,9)}

1a+1b=217;2ab=17(a+b)consider(2a17)(2b17)=4ab34(a+b)+172itfollowsthat4ab34(a+b)=0soweget(2a17)(2b17)=172sinceaandbarepositiveintegerwecantake(i)2a17=1and2a17=172whichyields(a,b)=(9,103)(ii)2a17=17and2a17=17whichyields(a,b)=(17,17)(iii)2a17=172and2a17=1whichyields(a,b)=(103,9)solution{(9,103),(17,17),(103,9)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com