Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 128681 by bemath last updated on 09/Jan/21

 Given ((sin x))^(1/3)  − ((cos x))^(1/3)  = (1/( (3)^(1/3) ))   then sin^2 x =?

$$\:\mathrm{Given}\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}\:=\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}} \\ $$$$\:\mathrm{then}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:=?\: \\ $$

Commented by MJS_new last updated on 09/Jan/21

not funny to solve exactly but possible...

$$\mathrm{not}\:\mathrm{funny}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{exactly}\:\mathrm{but}\:\mathrm{possible}... \\ $$

Answered by MJS_new last updated on 09/Jan/21

(a)^(1/3) −(b)^(1/3) =(c)^(1/3)      ∣^3   a−b−3((ab))^(1/3) ((a)^(1/3) −(b)^(1/3) )=c       [insert from above (a)^(1/3) −(b)^(1/3) =(c)^(1/3) ]  3((abc))^(1/3) =a−b−c  27abc=(a+b−c)^3   a=sin x ∧b=cos x ∧ c=(1/3)  9sin x cos x =(−(1/3)+sin x −cos x)^3   let t=tan (x/2) ⇔ x=2arctan t and transforming  t^6 +((279)/4)t^5 +21t^4 −9t^3 −42t^2 −((99)/4)t−8=0  amazingly this can be completely solved  I get 3 square factors  f_1 (t)f_2 (t)f_3 (t)=0  f_1 (t)=t^2 +(3/4)t+(1/4)  f_2 (t)=t^2 +((3(23−3(√(57))))/2)t−((67−9(√(57)))/2)  f_3 (t)=t^2 +((3(23+3(√(57))))/2)t−((67+9(√(57)))/2)  only f_3 (t)=0 has real roots  t_1 =−((3(23+3(√(57)))+(√(2(4957+657(√(57)))))/4)≈−69.4459  t_2 =−((3(23+3(√(57)))−(√(2(4957+657(√(57)))))/4)≈.971609  sin^2  x =(((2t)/(t^2 +1)))^2   now the rest is easy

$$\sqrt[{\mathrm{3}}]{{a}}−\sqrt[{\mathrm{3}}]{{b}}=\sqrt[{\mathrm{3}}]{{c}}\:\:\:\:\:\mid^{\mathrm{3}} \\ $$$${a}−{b}−\mathrm{3}\sqrt[{\mathrm{3}}]{{ab}}\left(\sqrt[{\mathrm{3}}]{{a}}−\sqrt[{\mathrm{3}}]{{b}}\right)={c} \\ $$$$\:\:\:\:\:\left[\mathrm{insert}\:\mathrm{from}\:\mathrm{above}\:\sqrt[{\mathrm{3}}]{{a}}−\sqrt[{\mathrm{3}}]{{b}}=\sqrt[{\mathrm{3}}]{{c}}\right] \\ $$$$\mathrm{3}\sqrt[{\mathrm{3}}]{{abc}}={a}−{b}−{c} \\ $$$$\mathrm{27}{abc}=\left({a}+{b}−{c}\right)^{\mathrm{3}} \\ $$$${a}=\mathrm{sin}\:{x}\:\wedge{b}=\mathrm{cos}\:{x}\:\wedge\:{c}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{9sin}\:{x}\:\mathrm{cos}\:{x}\:=\left(−\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{sin}\:{x}\:−\mathrm{cos}\:{x}\right)^{\mathrm{3}} \\ $$$$\mathrm{let}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Leftrightarrow\:{x}=\mathrm{2arctan}\:{t}\:\mathrm{and}\:\mathrm{transforming} \\ $$$${t}^{\mathrm{6}} +\frac{\mathrm{279}}{\mathrm{4}}{t}^{\mathrm{5}} +\mathrm{21}{t}^{\mathrm{4}} −\mathrm{9}{t}^{\mathrm{3}} −\mathrm{42}{t}^{\mathrm{2}} −\frac{\mathrm{99}}{\mathrm{4}}{t}−\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{amazingly}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{completely}\:\mathrm{solved} \\ $$$$\mathrm{I}\:\mathrm{get}\:\mathrm{3}\:\mathrm{square}\:\mathrm{factors} \\ $$$${f}_{\mathrm{1}} \left({t}\right){f}_{\mathrm{2}} \left({t}\right){f}_{\mathrm{3}} \left({t}\right)=\mathrm{0} \\ $$$${f}_{\mathrm{1}} \left({t}\right)={t}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}{t}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${f}_{\mathrm{2}} \left({t}\right)={t}^{\mathrm{2}} +\frac{\mathrm{3}\left(\mathrm{23}−\mathrm{3}\sqrt{\mathrm{57}}\right)}{\mathrm{2}}{t}−\frac{\mathrm{67}−\mathrm{9}\sqrt{\mathrm{57}}}{\mathrm{2}} \\ $$$${f}_{\mathrm{3}} \left({t}\right)={t}^{\mathrm{2}} +\frac{\mathrm{3}\left(\mathrm{23}+\mathrm{3}\sqrt{\mathrm{57}}\right)}{\mathrm{2}}{t}−\frac{\mathrm{67}+\mathrm{9}\sqrt{\mathrm{57}}}{\mathrm{2}} \\ $$$$\mathrm{only}\:{f}_{\mathrm{3}} \left({t}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{real}\:\mathrm{roots} \\ $$$${t}_{\mathrm{1}} =−\frac{\mathrm{3}\left(\mathrm{23}+\mathrm{3}\sqrt{\mathrm{57}}\right)+\sqrt{\mathrm{2}\left(\mathrm{4957}+\mathrm{657}\sqrt{\mathrm{57}}\right.}}{\mathrm{4}}\approx−\mathrm{69}.\mathrm{4459} \\ $$$${t}_{\mathrm{2}} =−\frac{\mathrm{3}\left(\mathrm{23}+\mathrm{3}\sqrt{\mathrm{57}}\right)−\sqrt{\mathrm{2}\left(\mathrm{4957}+\mathrm{657}\sqrt{\mathrm{57}}\right.}}{\mathrm{4}}\approx.\mathrm{971609} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}\:=\left(\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{now}\:\mathrm{the}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{easy} \\ $$

Commented by bemath last updated on 10/Jan/21

������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com