Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 128751 by bemath last updated on 10/Jan/21

Find maximum value of    ∣x∣ (√(16−y^2 )) + ∣y∣ (√(4−x^2 )) for all real x and y.

$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mid\mathrm{x}\mid\:\sqrt{\mathrm{16}−\mathrm{y}^{\mathrm{2}} }\:+\:\mid\mathrm{y}\mid\:\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\:\mathrm{for}\:\mathrm{all}\:\mathrm{real}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}. \\ $$$$ \\ $$

Answered by mr W last updated on 10/Jan/21

a=∣x∣=2 sin α ≥0, 0≤α≤(π/2)  b=∣y∣=4 sin β ≥0, 0≤β≤(π/2)  a(√(4^2 −b^2 ))+b(√(2^2 −a^2 ))  =8 sin α cos β+8 sin β cos α  =8 sin (α+β)  max. =8 at sin (α+β)=1, e.g. α=β=(π/4)

$${a}=\mid{x}\mid=\mathrm{2}\:\mathrm{sin}\:\alpha\:\geqslant\mathrm{0},\:\mathrm{0}\leqslant\alpha\leqslant\frac{\pi}{\mathrm{2}} \\ $$$${b}=\mid{y}\mid=\mathrm{4}\:\mathrm{sin}\:\beta\:\geqslant\mathrm{0},\:\mathrm{0}\leqslant\beta\leqslant\frac{\pi}{\mathrm{2}} \\ $$$${a}\sqrt{\mathrm{4}^{\mathrm{2}} −{b}^{\mathrm{2}} }+{b}\sqrt{\mathrm{2}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$=\mathrm{8}\:\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta+\mathrm{8}\:\mathrm{sin}\:\beta\:\mathrm{cos}\:\alpha \\ $$$$=\mathrm{8}\:\mathrm{sin}\:\left(\alpha+\beta\right) \\ $$$${max}.\:=\mathrm{8}\:{at}\:\mathrm{sin}\:\left(\alpha+\beta\right)=\mathrm{1},\:{e}.{g}.\:\alpha=\beta=\frac{\pi}{\mathrm{4}} \\ $$

Commented by liberty last updated on 10/Jan/21

i think not 8 is maximum value

$$\mathrm{i}\:\mathrm{think}\:\mathrm{not}\:\mathrm{8}\:\mathrm{is}\:\mathrm{maximum}\:\mathrm{value} \\ $$

Commented by mr W last updated on 10/Jan/21

if the maximum from 8 sin (α+β)  is not 8, then i don′t unterstand this   world any more :)

$${if}\:{the}\:{maximum}\:{from}\:\mathrm{8}\:\mathrm{sin}\:\left(\alpha+\beta\right) \\ $$$${is}\:{not}\:\mathrm{8},\:{then}\:{i}\:{don}'{t}\:{unterstand}\:{this}\: \\ $$$$\left.{world}\:{any}\:{more}\::\right) \\ $$

Commented by liberty last updated on 10/Jan/21

what is the reason by assuming∣x∣ = 2 sin α ?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{reason}\:\mathrm{by}\:\mathrm{assuming}\mid\mathrm{x}\mid\:=\:\mathrm{2}\:\mathrm{sin}\:\alpha\:?\: \\ $$

Commented by mr W last updated on 10/Jan/21

since 4−x^2 ≥0 ⇒∣x∣≤2

$${since}\:\mathrm{4}−{x}^{\mathrm{2}} \geqslant\mathrm{0}\:\Rightarrow\mid{x}\mid\leqslant\mathrm{2} \\ $$

Commented by liberty last updated on 10/Jan/21

ok. you are right.

$$\mathrm{ok}.\:\mathrm{you}\:\mathrm{are}\:\mathrm{right}. \\ $$

Answered by liberty last updated on 10/Jan/21

 Using the inequality  xy ≤ ((x^2 +y^2 )/2)   we have  { ((∣x∣ (√(16−y^2 )) ≤ ((x^2 +16−y^2 )/2))),((∣y∣ (√(4−x^2 )) ≤ ((y^2 +4−x^2 )/2))) :}  adding the both equation we find    ∣x∣ (√(16−y^2 )) + ∣y∣ (√(4−x^2 )) ≤ ((x^2 +16−y^2 +y^2 +4−x^2 )/2) = 10  ∴ its maximum value is 10

$$\:\mathrm{Using}\:\mathrm{the}\:\mathrm{inequality}\:\:{xy}\:\leqslant\:\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\mathrm{we}\:\mathrm{have}\:\begin{cases}{\mid\mathrm{x}\mid\:\sqrt{\mathrm{16}−\mathrm{y}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{16}−\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\mid\mathrm{y}\mid\:\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{y}^{\mathrm{2}} +\mathrm{4}−\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{adding}\:\mathrm{the}\:\mathrm{both}\:\mathrm{equation}\:\mathrm{we}\:\mathrm{find}\: \\ $$$$\:\mid\mathrm{x}\mid\:\sqrt{\mathrm{16}−\mathrm{y}^{\mathrm{2}} }\:+\:\mid\mathrm{y}\mid\:\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{16}−\mathrm{y}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{4}−\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:=\:\mathrm{10} \\ $$$$\therefore\:\mathrm{its}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{is}\:\mathrm{10}\: \\ $$$$ \\ $$

Commented by mr W last updated on 10/Jan/21

can you say what values  x and y have  such that you reach the maximum  10?

$${can}\:{you}\:{say}\:{what}\:{values}\:\:{x}\:{and}\:{y}\:{have} \\ $$$${such}\:{that}\:{you}\:{reach}\:{the}\:{maximum} \\ $$$$\mathrm{10}? \\ $$

Commented by liberty last updated on 10/Jan/21

10 is only an upper bound but cannot be   attained since the inequality xy ≤ ((x^2 +y^2 )/2)  holds if and only if x=y , therefore the max  value is attained ∣x∣ =(√(16−y^2 )) and ∣y∣=(√(4−x^2 ))  or x^2 =16−y^2  and y^2 =4−x^2  ⇔ x^2 +y^2 = 16=4  contradictory !

$$\mathrm{10}\:\mathrm{is}\:\mathrm{only}\:\mathrm{an}\:\mathrm{upper}\:\mathrm{bound}\:\mathrm{but}\:\mathrm{cannot}\:\mathrm{be}\: \\ $$$$\mathrm{attained}\:\mathrm{since}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{xy}\:\leqslant\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{holds}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{x}=\mathrm{y}\:,\:\mathrm{therefore}\:\mathrm{the}\:\mathrm{max} \\ $$$$\mathrm{value}\:\mathrm{is}\:\mathrm{attained}\:\mid\mathrm{x}\mid\:=\sqrt{\mathrm{16}−\mathrm{y}^{\mathrm{2}} }\:\mathrm{and}\:\mid\mathrm{y}\mid=\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{or}\:\mathrm{x}^{\mathrm{2}} =\mathrm{16}−\mathrm{y}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{y}^{\mathrm{2}} =\mathrm{4}−\mathrm{x}^{\mathrm{2}} \:\Leftrightarrow\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\:\mathrm{16}=\mathrm{4} \\ $$$$\mathrm{contradictory}\:! \\ $$

Commented by mr W last updated on 10/Jan/21

correct!  so be careful when adding two or  more inequalities if they are not  independent from each other!

$${correct}! \\ $$$${so}\:{be}\:{careful}\:{when}\:{adding}\:{two}\:{or} \\ $$$${more}\:{inequalities}\:{if}\:{they}\:{are}\:{not} \\ $$$${independent}\:{from}\:{each}\:{other}! \\ $$

Answered by mr W last updated on 10/Jan/21

an other way:  f(a,b)=a(√(16−b^2 ))+b(√(4−a^2 ))  (∂f/∂a)=(√(16−b^2 ))−((ab)/( (√(4−a^2 ))))=0  (∂f/∂b)=−((ab)/( (√(16−b^2 ))))+(√(4−a^2 ))=0  ⇒ab=(√((4−a^2 )(16−b^2 )))  ⇒4a^2 +b^2 =16  ⇒16−b^2 =4a^2   ⇒b=2(√(4−a^2 ))  ⇒f_(max) =2a^2 +2(√(4−a^2 ))×(√(4−a^2 ))=8

$${an}\:{other}\:{way}: \\ $$$${f}\left({a},{b}\right)={a}\sqrt{\mathrm{16}−{b}^{\mathrm{2}} }+{b}\sqrt{\mathrm{4}−{a}^{\mathrm{2}} } \\ $$$$\frac{\partial{f}}{\partial{a}}=\sqrt{\mathrm{16}−{b}^{\mathrm{2}} }−\frac{{ab}}{\:\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\frac{\partial{f}}{\partial{b}}=−\frac{{ab}}{\:\sqrt{\mathrm{16}−{b}^{\mathrm{2}} }}+\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{ab}=\sqrt{\left(\mathrm{4}−{a}^{\mathrm{2}} \right)\left(\mathrm{16}−{b}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\mathrm{4}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{16} \\ $$$$\Rightarrow\mathrm{16}−{b}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$$\Rightarrow{b}=\mathrm{2}\sqrt{\mathrm{4}−{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{f}_{{max}} =\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }×\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }=\mathrm{8} \\ $$

Commented by liberty last updated on 10/Jan/21

yes. nice

$$\mathrm{yes}.\:\mathrm{nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com