Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 128767 by LUFFY last updated on 10/Jan/21

Commented by LUFFY last updated on 10/Jan/21

ans (1/(24)) but i am getting (1/(12))

$$\mathrm{ans}\:\frac{\mathrm{1}}{\mathrm{24}}\:\mathrm{but}\:\mathrm{i}\:\mathrm{am}\:\mathrm{getting}\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Commented by LUFFY last updated on 10/Jan/21

send me please

$$\boldsymbol{{send}}\:\boldsymbol{{me}}\:\boldsymbol{{please}} \\ $$

Answered by Dwaipayan Shikari last updated on 10/Jan/21

Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) )).ζ(k+1)      (k=4m+1)  k=13     It is ((13!)/((2π)^(14) )).(((2π)^(14) B_(14) )/(2(14)!))=(B_(14) /(28))=(1/(24))  B_n =Bernoulli Number

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{k}} }{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{{k}!}{\left(\mathrm{2}\pi\right)^{{k}+\mathrm{1}} }.\zeta\left({k}+\mathrm{1}\right)\:\:\:\:\:\:\left({k}=\mathrm{4}{m}+\mathrm{1}\right) \\ $$$${k}=\mathrm{13}\:\:\:\:\:{It}\:{is}\:\frac{\mathrm{13}!}{\left(\mathrm{2}\pi\right)^{\mathrm{14}} }.\frac{\left(\mathrm{2}\pi\right)^{\mathrm{14}} {B}_{\mathrm{14}} }{\mathrm{2}\left(\mathrm{14}\right)!}=\frac{{B}_{\mathrm{14}} }{\mathrm{28}}=\frac{\mathrm{1}}{\mathrm{24}} \\ $$$$\boldsymbol{\mathrm{B}}_{{n}} ={Bernoulli}\:{Number} \\ $$

Commented by LUFFY last updated on 10/Jan/21

check again

$$\mathrm{check}\:\mathrm{again} \\ $$

Commented by LUFFY last updated on 10/Jan/21

can you send full solution

$$\mathrm{can}\:\mathrm{you}\:\mathrm{send}\:\mathrm{full}\:\mathrm{solution} \\ $$

Commented by Dwaipayan Shikari last updated on 19/Feb/21

(1/(e^(2π) −1))=Σ_(n=1) ^∞ e^(−2πn  )               Σ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/(2x))coth(πx)−(1/(2x^2 ))  (1/x)+2xΣ_(n=1) ^∞ (1/(n^2 +x^2 ))=πcoth(πx)⇒(1/(2x))+xΣ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/2)+(π/(e^(2πx) −1))  (1/(e^(2πx) −1))=(x/π)Σ_(n=1) ^∞ (1/(n^2 +x^2 ))+(1/(2πx))−(1/2)  Σ_(n=1) ^∞ e^(−2πnx) =(1/(2πx))Σ_(n=1) ^∞ (1/(x+in))+(1/(x−in))+(1/(2πx))−(1/2)  differentiating   k th time  (k=4m+1)  (2π)^k Σ_(x=1) ^∞ n^k e^(−2πnx) =((k!)/((x)^(k+1) (2π)))+Σ_(n=1) ^∞ (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))  Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) ))Σ_(x=1) ^∞ (1/x^(k+1) )+Σ_(n=1) ^∞ Σ_(x=1) ^∞ (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))  ⇒Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) ))ζ(k+1)    (k=4m+1)  Σ_(x≥1) Σ_(n≥1) (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))=0

$$\frac{\mathrm{1}}{{e}^{\mathrm{2}\pi} −\mathrm{1}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\pi{n}\:\:} \:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}{x}}{coth}\left(\pi{x}\right)−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{x}}+\mathrm{2}{x}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }=\pi{coth}\left(\pi{x}\right)\Rightarrow\frac{\mathrm{1}}{\mathrm{2}{x}}+{x}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}}+\frac{\pi}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}=\frac{{x}}{\pi}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}\pi{x}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\pi{nx}} =\frac{\mathrm{1}}{\mathrm{2}\pi{x}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}+{in}}+\frac{\mathrm{1}}{{x}−{in}}+\frac{\mathrm{1}}{\mathrm{2}\pi{x}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${differentiating}\:\:\:{k}\:{th}\:{time}\:\:\left({k}=\mathrm{4}{m}+\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\pi\right)^{{k}} \underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{{k}} {e}^{−\mathrm{2}\pi{nx}} =\frac{{k}!}{\left({x}\right)^{{k}+\mathrm{1}} \left(\mathrm{2}\pi\right)}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({x}+{in}\right)^{{k}+\mathrm{1}} }+\frac{\mathrm{1}}{\left({x}−{in}\right)^{{k}+\mathrm{1}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{k}} }{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{{k}!}{\left(\mathrm{2}\pi\right)^{{k}+\mathrm{1}} }\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}^{{k}+\mathrm{1}} }+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({x}+{in}\right)^{{k}+\mathrm{1}} }+\frac{\mathrm{1}}{\left({x}−{in}\right)^{{k}+\mathrm{1}} } \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{k}} }{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{{k}!}{\left(\mathrm{2}\pi\right)^{{k}+\mathrm{1}} }\zeta\left({k}+\mathrm{1}\right)\:\:\:\:\left({k}=\mathrm{4}{m}+\mathrm{1}\right) \\ $$$$\underset{{x}\geqslant\mathrm{1}} {\sum}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left({x}+{in}\right)^{{k}+\mathrm{1}} }+\frac{\mathrm{1}}{\left({x}−{in}\right)^{{k}+\mathrm{1}} }=\mathrm{0} \\ $$

Commented by Dwaipayan Shikari last updated on 10/Jan/21

For every k=4m+1 , this is valid   Σ_(n=1) ^∞ (n^5 /(e^(2πn) −1))=(1/(504))...

$${For}\:{every}\:{k}=\mathrm{4}{m}+\mathrm{1}\:,\:{this}\:{is}\:{valid}\: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{5}} }{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{504}}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com