Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 128767 by LUFFY last updated on 10/Jan/21

Commented by LUFFY last updated on 10/Jan/21

ans (1/(24)) but i am getting (1/(12))

ans124butiamgetting112

Commented by LUFFY last updated on 10/Jan/21

send me please

sendmeplease

Answered by Dwaipayan Shikari last updated on 10/Jan/21

Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) )).ζ(k+1)      (k=4m+1)  k=13     It is ((13!)/((2π)^(14) )).(((2π)^(14) B_(14) )/(2(14)!))=(B_(14) /(28))=(1/(24))  B_n =Bernoulli Number

n=1nke2πn1=k!(2π)k+1.ζ(k+1)(k=4m+1)k=13Itis13!(2π)14.(2π)14B142(14)!=B1428=124Bn=BernoulliNumber

Commented by LUFFY last updated on 10/Jan/21

check again

checkagain

Commented by LUFFY last updated on 10/Jan/21

can you send full solution

canyousendfullsolution

Commented by Dwaipayan Shikari last updated on 19/Feb/21

(1/(e^(2π) −1))=Σ_(n=1) ^∞ e^(−2πn  )               Σ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/(2x))coth(πx)−(1/(2x^2 ))  (1/x)+2xΣ_(n=1) ^∞ (1/(n^2 +x^2 ))=πcoth(πx)⇒(1/(2x))+xΣ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/2)+(π/(e^(2πx) −1))  (1/(e^(2πx) −1))=(x/π)Σ_(n=1) ^∞ (1/(n^2 +x^2 ))+(1/(2πx))−(1/2)  Σ_(n=1) ^∞ e^(−2πnx) =(1/(2πx))Σ_(n=1) ^∞ (1/(x+in))+(1/(x−in))+(1/(2πx))−(1/2)  differentiating   k th time  (k=4m+1)  (2π)^k Σ_(x=1) ^∞ n^k e^(−2πnx) =((k!)/((x)^(k+1) (2π)))+Σ_(n=1) ^∞ (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))  Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) ))Σ_(x=1) ^∞ (1/x^(k+1) )+Σ_(n=1) ^∞ Σ_(x=1) ^∞ (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))  ⇒Σ_(n=1) ^∞ (n^k /(e^(2πn) −1))=((k!)/((2π)^(k+1) ))ζ(k+1)    (k=4m+1)  Σ_(x≥1) Σ_(n≥1) (1/((x+in)^(k+1) ))+(1/((x−in)^(k+1) ))=0

1e2π1=n=1e2πnn=11n2+x2=π2xcoth(πx)12x21x+2xn=11n2+x2=πcoth(πx)12x+xn=11n2+x2=π2+πe2πx11e2πx1=xπn=11n2+x2+12πx12n=1e2πnx=12πxn=11x+in+1xin+12πx12differentiatingkthtime(k=4m+1)(2π)kx=1nke2πnx=k!(x)k+1(2π)+n=11(x+in)k+1+1(xin)k+1n=1nke2πn1=k!(2π)k+1x=11xk+1+n=1x=11(x+in)k+1+1(xin)k+1n=1nke2πn1=k!(2π)k+1ζ(k+1)(k=4m+1)x1n11(x+in)k+1+1(xin)k+1=0

Commented by Dwaipayan Shikari last updated on 10/Jan/21

For every k=4m+1 , this is valid   Σ_(n=1) ^∞ (n^5 /(e^(2πn) −1))=(1/(504))...

Foreveryk=4m+1,thisisvalidn=1n5e2πn1=1504...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com