Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 128788 by bramlexs22 last updated on 10/Jan/21

 Prove that (1+tan x)(1+tan 4x) =2?

$$\:\mathrm{Prove}\:\mathrm{that}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{4x}\right)\:=\mathrm{2}? \\ $$

Commented by bramlexs22 last updated on 10/Jan/21

i think its not true !

$$\mathrm{i}\:\mathrm{think}\:\mathrm{its}\:\mathrm{not}\:\mathrm{true}\:! \\ $$

Commented by mr W last updated on 10/Jan/21

it is not true!

$${it}\:\boldsymbol{{is}}\:{not}\:{true}! \\ $$

Commented by liberty last updated on 10/Jan/21

i think it should be (1+tan x)(1+tan 44x)=2

$$\mathrm{i}\:\mathrm{think}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{44x}\right)=\mathrm{2} \\ $$

Commented by mr W last updated on 10/Jan/21

try with x=0!    generally:  (1+tan nx)(1+tan mx)≠constant!

$${try}\:{with}\:{x}=\mathrm{0}! \\ $$$$ \\ $$$${generally}: \\ $$$$\left(\mathrm{1}+\mathrm{tan}\:{nx}\right)\left(\mathrm{1}+\mathrm{tan}\:{mx}\right)\neq{constant}! \\ $$

Commented by liberty last updated on 10/Jan/21

for nx+mx = (π/4) it is true!

$$\mathrm{for}\:\mathrm{nx}+\mathrm{mx}\:=\:\frac{\pi}{\mathrm{4}}\:\mathrm{it}\:\mathrm{is}\:\mathrm{true}! \\ $$

Commented by liberty last updated on 10/Jan/21

example (1+tan 2°)(1+tan 43°)=2   (1+tan 13°)(1+tan 32°)=2

$$\mathrm{example}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{2}°\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{43}°\right)=\mathrm{2} \\ $$$$\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{13}°\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{32}°\right)=\mathrm{2} \\ $$

Commented by mr W last updated on 10/Jan/21

x is variable, it stands for any value,  not a particular value.

$${x}\:{is}\:{variable},\:{it}\:{stands}\:{for}\:{any}\:{value}, \\ $$$${not}\:{a}\:{particular}\:{value}. \\ $$

Commented by benjo_mathlover last updated on 10/Jan/21

only correct for A+B=45° ⇒(1+tan A)(1+tan B)=2

$$\mathrm{only}\:\mathrm{correct}\:\mathrm{for}\:\mathrm{A}+\mathrm{B}=\mathrm{45}°\:\Rightarrow\left(\mathrm{1}+\mathrm{tan}\:\mathrm{A}\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{B}\right)=\mathrm{2} \\ $$$$ \\ $$

Answered by Olaf last updated on 10/Jan/21

f(x) = (1+tanx)(1+tan4x)  f(x) = (((cosx+sinx)(cos4x+sin4x))/(cosxcos4x))  f(x) = ((cosxcos4x+sinxsin4x+sinxcos4x+cosxsin4x)/(cosxcos4x))  f(x) = ((cos3x+sin5x)/(cosxcos4x))  f(x) = ((cos3x+cos((π/2)−5x))/(cosxcos4x))  f(x) = ((2cos(((3x+(π/2)−5x)/2))cos(((3x−(π/2)+5x)/2)))/(cosxcos4x))  f(x) = ((2cos(x−(π/4))cos(4x−(π/4)))/(cosxcos4x))  f(x) = 2 ⇔ cos(x−(π/4))cos(4x−(π/4)) = cosxcos4x  ⇔ (1/2)[cos3x+cos(5x−(π/2))] = (1/2)[cos3x+cos5x]  ⇔ cos(5x−(π/2)) = cos5x  ⇔ 5x−(π/2) = ±5x+2kπ, k∈Z  ⇔ x = (π/(20)) +((kπ)/(10)), k∈Z  S = {(π/(20))+((kπ)/(10)), k∈Z}  Numerically we can verify for example  that, for k = 0 :  (1+tan(π/(20)))(1+tan(π/5)) = 2

$${f}\left({x}\right)\:=\:\left(\mathrm{1}+\mathrm{tan}{x}\right)\left(\mathrm{1}+\mathrm{tan4}{x}\right) \\ $$$${f}\left({x}\right)\:=\:\frac{\left(\mathrm{cos}{x}+\mathrm{sin}{x}\right)\left(\mathrm{cos4}{x}+\mathrm{sin4}{x}\right)}{\mathrm{cos}{x}\mathrm{cos4}{x}} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{cos}{x}\mathrm{cos4}{x}+\mathrm{sin}{x}\mathrm{sin4}{x}+\mathrm{sin}{x}\mathrm{cos4}{x}+\mathrm{cos}{x}\mathrm{sin4}{x}}{\mathrm{cos}{x}\mathrm{cos4}{x}} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{cos3}{x}+\mathrm{sin5}{x}}{\mathrm{cos}{x}\mathrm{cos4}{x}} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{cos3}{x}+\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{5}{x}\right)}{\mathrm{cos}{x}\mathrm{cos4}{x}} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{2cos}\left(\frac{\mathrm{3}{x}+\frac{\pi}{\mathrm{2}}−\mathrm{5}{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{3}{x}−\frac{\pi}{\mathrm{2}}+\mathrm{5}{x}}{\mathrm{2}}\right)}{\mathrm{cos}{x}\mathrm{cos4}{x}} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{2cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{4}}\right)}{\mathrm{cos}{x}\mathrm{cos4}{x}} \\ $$$${f}\left({x}\right)\:=\:\mathrm{2}\:\Leftrightarrow\:\mathrm{cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{4}}\right)\:=\:\mathrm{cos}{x}\mathrm{cos4}{x} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos3}{x}+\mathrm{cos}\left(\mathrm{5}{x}−\frac{\pi}{\mathrm{2}}\right)\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos3}{x}+\mathrm{cos5}{x}\right] \\ $$$$\Leftrightarrow\:\mathrm{cos}\left(\mathrm{5}{x}−\frac{\pi}{\mathrm{2}}\right)\:=\:\mathrm{cos5}{x} \\ $$$$\Leftrightarrow\:\mathrm{5}{x}−\frac{\pi}{\mathrm{2}}\:=\:\pm\mathrm{5}{x}+\mathrm{2}{k}\pi,\:{k}\in\mathbb{Z} \\ $$$$\Leftrightarrow\:{x}\:=\:\frac{\pi}{\mathrm{20}}\:+\frac{{k}\pi}{\mathrm{10}},\:{k}\in\mathbb{Z} \\ $$$$\mathcal{S}\:=\:\left\{\frac{\pi}{\mathrm{20}}+\frac{{k}\pi}{\mathrm{10}},\:{k}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Numerically}\:\mathrm{we}\:\mathrm{can}\:\mathrm{verify}\:\mathrm{for}\:\mathrm{example} \\ $$$$\mathrm{that},\:\mathrm{for}\:{k}\:=\:\mathrm{0}\:: \\ $$$$\left(\mathrm{1}+\mathrm{tan}\frac{\pi}{\mathrm{20}}\right)\left(\mathrm{1}+\mathrm{tan}\frac{\pi}{\mathrm{5}}\right)\:=\:\mathrm{2} \\ $$

Commented by liberty last updated on 10/Jan/21

correct sir

$$\mathrm{correct}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com