Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 128806 by LUFFY last updated on 10/Jan/21

Σ_(n=1) ^∞  (1/((n^2 +k^2 ))) = ??????

n=11(n2+k2)=??????

Answered by Dwaipayan Shikari last updated on 10/Jan/21

Σ_(n=1) ^∞ (1/(n^2 +k^2 ))=(1/(2ik))Σ_(n=1) ^∞ (1/(n−ik))−(1/(n+ik))  =(1/(2ik))(Σ_(n=1) ^∞ (1/n)−(1/(n+ik))−Σ_(n=1) ^∞ (1/n)−(1/(n−ik)))  =(1/(2ik))(ψ(1+ik)−ψ(1−ik))  =(1/(2ik))(ψ(ik)+(1/(ik))−ψ(1−ik))=−((ψ(1−ik)−ψ(ik))/(2ik))−(1/(2k^2 ))  =−((πcot(πki))/(2ki))−(1/(2k^2 ))=−(π/(2k))(((e^(πk) +e^(−πk) )/(e^(−πk) −e^(πk) )))−(1/(2k^2 ))  =(π/(2k))coth(πk)−(1/(2k^2 ))  =(π/(2k))+(π/(k(e^(2πk) −1)))−(1/(2k^2 ))

n=11n2+k2=12ikn=11nik1n+ik=12ik(n=11n1n+ikn=11n1nik)=12ik(ψ(1+ik)ψ(1ik))=12ik(ψ(ik)+1ikψ(1ik))=ψ(1ik)ψ(ik)2ik12k2=πcot(πki)2ki12k2=π2k(eπk+eπkeπkeπk)12k2=π2kcoth(πk)12k2=π2k+πk(e2πk1)12k2

Answered by Olaf last updated on 10/Jan/21

k = 0 : S = Σ_(n=1) ^∞ (1/n^2 ) = (π^2 /6)  k ≠ 0 : (π/2).((coth(kπ))/k)−(1/(2k^2 ))

k=0:S=n=11n2=π26k0:π2.coth(kπ)k12k2

Commented by Dwaipayan Shikari last updated on 10/Jan/21

Yes sir !Not valid of k=0

Yessir!Notvalidofk=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com