Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 128817 by benjo_mathlover last updated on 10/Jan/21

 If lim_(x→1) ((((ax^3 +b))^(1/3)  −2x)/(x^2 −1)) = M then lim_(x→1)  ((((ax^3 +b))^(1/3) −2)/(x^2 −3x+2)) =?

Iflimx1ax3+b32xx21=Mthenlimx1ax3+b32x23x+2=?

Answered by benjo_mathlover last updated on 10/Jan/21

i use trick mr Liberty    lim_(x→1)  ((((ax^3 +b))^(1/3)  −2x−2+2x)/((x−1)(x−2))) = lim_(x→1)  ((((ax^3 +b))^(1/3) −2x)/(−(x−1))) + lim_(x→1)  ((2(x−1))/((x−1)(x−2)))   = −lim_(x→1)  (((x+1){((ax^3 +b))^(1/3) −2x})/((x^2 −1))) + lim_(x→1)  (2/(x−2))   = −2M−2

iusetrickmrLibertylimx1ax3+b32x2+2x(x1)(x2)=limx1ax3+b32x(x1)+limx12(x1)(x1)(x2)=limx1(x+1){ax3+b32x}(x21)+limx12x2=2M2

Commented by liberty last updated on 10/Jan/21

hahahaha.....

hahahaha.....

Answered by rydasss last updated on 11/Jan/21

soal utbk 2019

soalutbk2019

Terms of Service

Privacy Policy

Contact: info@tinkutara.com