Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 128845 by Dwaipayan Shikari last updated on 10/Jan/21

1+(1/2).((1.4)/((5.1!)^2 ))+(1/3).((1.4.6.9)/((5^2 .2!)^2 ))+(1/4).((1.4.6.9.11.14)/((5^3 .3!)^2 ))+...=((b^2 (√((b−(√b))/2)))/(aπ))  Find 5a−8b

1+12.1.4(5.1!)2+13.1.4.6.9(52.2!)2+14.1.4.6.9.11.14(53.3!)2+...=b2bb2aπFind5a8b

Answered by mindispower last updated on 10/Jan/21

=1+Σ_(n≥1) ((Π_(k=0) ^(n−1) (1+5k)(4+5k))/((n+1).(5^n .n!)^2 ))  =1+Σ_(n≥1) ((5^(2n) Π_(k=0) ^(n−1) (k+(1/5)).Π_(k=0) ^(n−1) (k+(4/5)))/(5^(2n) .(n+1)!.n!))  =1+Σ_(n≥1) ((((1/5))_n .((4/5))_n )/((2)_n )).(((1)^n )/(n!))  =_2 F_1 ((1/5),(4/5);2;[1])=((Γ(2−1)Γ(2))/(Γ(2−(1/5))Γ(2−(4/5))))=(1/(Γ((9/5))Γ((6/5))))  =Γ((9/5))=(4/5)Γ((4/5))  Γ((6/5))=(1/5)Γ((1/5))  S=((25)/(4Γ((1/5))Γ((4/5))))=((25)/(4π))sin((π/5))=((25)/(4π)).(1/4).(√(10−2(√5)))  =((25)/(8π)).(√((5−(√5))/2)),b=5,a=8  5a−8b=0

=1+n1n1k=0(1+5k)(4+5k)(n+1).(5n.n!)2=1+n152nn1k=0(k+15).n1k=0(k+45)52n.(n+1)!.n!=1+n1(15)n.(45)n(2)n.(1)nn!=2F1(15,45;2;[1])=Γ(21)Γ(2)Γ(215)Γ(245)=1Γ(95)Γ(65)=Γ(95)=45Γ(45)Γ(65)=15Γ(15)S=254Γ(15)Γ(45)=254πsin(π5)=254π.14.1025=258π.552,b=5,a=85a8b=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com