Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128851 by mnjuly1970 last updated on 10/Jan/21

               ...nice   calculus  (I)...     calculate  ::         Ψ=∫_0 ^( 1) {(e−1)(√(log( 1+ex−x ))) +e^x^2  }dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}\:\:\left({I}\right)... \\ $$$$\:\:\:{calculate}\:\::: \\ $$$$ \\ $$$$\:\:\:\:\:\Psi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\left({e}−\mathrm{1}\right)\sqrt{{log}\left(\:\mathrm{1}+{ex}−{x}\:\right)}\:+{e}^{{x}^{\mathrm{2}} } \right\}{dx}=? \\ $$$$ \\ $$

Commented by mindispower last updated on 10/Jan/21

{.} fraction part ?

$$\left\{.\right\}\:{fraction}\:{part}\:? \\ $$

Commented by mnjuly1970 last updated on 11/Jan/21

no mr power

$${no}\:{mr}\:{power} \\ $$

Answered by Olaf last updated on 11/Jan/21

Let f(x) = (e−1)(√(ln(1+(e−1)x))+e^x^2    f is clearly an increasing function and  f(0) = 1, f(1) = e  ⇒ ∃a∈]0,1[ \ f(a) = 2    Ψ = ∫_0 ^1 {f(x)}dx = ∫_0 ^a {f(x)}dx+∫_a ^1 {f(x)}dx  Ψ = ∫_0 ^a (f(x)−1)dx+∫_a ^1 (f(x)−2)dx  Ψ = ∫_0 ^1 f(x)dx−a−2(1−a)  Ψ = ∫_0 ^1 f(x)dx+a−2  Let u = ln(1+(e−1)x)  e^u  = 1+(e−1)x  e^u du = (e−1)dx    I = (e−1)∫_0 ^1 (√(ln(1+(e−1)x)))dx  I = (e−1)∫_0 ^1 (√u)((e^u du)/(e−1))  I = ∫_0 ^1 (√u)e^u du  I = [(√x)e^x −((√π)/2)erfi((√x))]_0 ^1  = e−((√π)/2)erfi(1)    J = ∫_0 ^1 e^x^2  dx = [((√π)/2)erfi(x)]_0 ^1  = ((√π)/2)erfi(1)    Ψ = I+J+a−2 = e+a−2  (a ≈ 0,542)

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\left({e}−\mathrm{1}\right)\sqrt{\mathrm{ln}\left(\mathrm{1}+\left({e}−\mathrm{1}\right){x}\right.}+{e}^{{x}^{\mathrm{2}} } \\ $$$${f}\:\mathrm{is}\:\mathrm{clearly}\:\mathrm{an}\:\mathrm{increasing}\:\mathrm{function}\:\mathrm{and} \\ $$$${f}\left(\mathrm{0}\right)\:=\:\mathrm{1},\:{f}\left(\mathrm{1}\right)\:=\:{e} \\ $$$$\left.\Rightarrow\:\exists{a}\in\right]\mathrm{0},\mathrm{1}\left[\:\backslash\:{f}\left({a}\right)\:=\:\mathrm{2}\right. \\ $$$$ \\ $$$$\Psi\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left\{{f}\left({x}\right)\right\}{dx}\:=\:\int_{\mathrm{0}} ^{{a}} \left\{{f}\left({x}\right)\right\}{dx}+\int_{{a}} ^{\mathrm{1}} \left\{{f}\left({x}\right)\right\}{dx} \\ $$$$\Psi\:=\:\int_{\mathrm{0}} ^{{a}} \left({f}\left({x}\right)−\mathrm{1}\right){dx}+\int_{{a}} ^{\mathrm{1}} \left({f}\left({x}\right)−\mathrm{2}\right){dx} \\ $$$$\Psi\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}−{a}−\mathrm{2}\left(\mathrm{1}−{a}\right) \\ $$$$\Psi\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}+{a}−\mathrm{2} \\ $$$$\mathrm{Let}\:{u}\:=\:\mathrm{ln}\left(\mathrm{1}+\left({e}−\mathrm{1}\right){x}\right) \\ $$$${e}^{{u}} \:=\:\mathrm{1}+\left({e}−\mathrm{1}\right){x} \\ $$$${e}^{{u}} {du}\:=\:\left({e}−\mathrm{1}\right){dx} \\ $$$$ \\ $$$$\mathrm{I}\:=\:\left({e}−\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{ln}\left(\mathrm{1}+\left({e}−\mathrm{1}\right){x}\right)}{dx} \\ $$$$\mathrm{I}\:=\:\left({e}−\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}\frac{{e}^{{u}} {du}}{{e}−\mathrm{1}} \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}{e}^{{u}} {du} \\ $$$$\mathrm{I}\:=\:\left[\sqrt{{x}}{e}^{{x}} −\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left(\sqrt{{x}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:{e}−\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx}\:=\:\left[\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\Psi\:=\:\mathrm{I}+\mathrm{J}+{a}−\mathrm{2}\:=\:{e}+{a}−\mathrm{2} \\ $$$$\left({a}\:\approx\:\mathrm{0},\mathrm{542}\right) \\ $$

Commented by mnjuly1970 last updated on 11/Jan/21

grateful for your work mr olaf..

$${grateful}\:{for}\:{your}\:{work}\:{mr}\:{olaf}.. \\ $$

Answered by mnjuly1970 last updated on 11/Jan/21

   note: ∫_(a ) ^( b) f(x)dx+∫_c ^( d) f^( −1) (x)dx=bd−ac    Ψ=∫_0 ^( 1) (e−1)(√(log(1+x(e−1))) dx              + ∫_0 ^( 1) e^x^2  dx    ∴ Ψ=^([u=(1+x(e−1)]) ∫_1 ^( e) (√(log(u))) du+∫_0 ^( 1) e^x^2  dx           =∫_1 ^( e) (√(log(x))) +∫_0 ^( 1) e^x^2  dx=e      note: f(x)=(√(log(x))) ⇔ f^( −1) (x)=e^x^2

$$\:\:\:{note}:\:\int_{{a}\:} ^{\:{b}} {f}\left({x}\right){dx}+\int_{{c}} ^{\:{d}} {f}^{\:−\mathrm{1}} \left({x}\right){dx}={bd}−{ac} \\ $$$$\:\:\Psi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({e}−\mathrm{1}\right)\sqrt{{log}\left(\mathrm{1}+{x}\left({e}−\mathrm{1}\right)\right.}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$\:\:\therefore\:\Psi\overset{\left[{u}=\left(\mathrm{1}+{x}\left({e}−\mathrm{1}\right)\right]\right.} {=}\int_{\mathrm{1}} ^{\:{e}} \sqrt{{log}\left({u}\right)}\:{du}+\int_{\mathrm{0}} ^{\:\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\int_{\mathrm{1}} ^{\:{e}} \sqrt{{log}\left({x}\right)}\:+\int_{\mathrm{0}} ^{\:\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx}={e} \\ $$$$\:\:\:\:{note}:\:{f}\left({x}\right)=\sqrt{{log}\left({x}\right)}\:\Leftrightarrow\:{f}^{\:−\mathrm{1}} \left({x}\right)={e}^{{x}^{\mathrm{2}} } \\ $$

Answered by mnjuly1970 last updated on 11/Jan/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com