Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 128892 by n0y0n last updated on 11/Jan/21

Commented by mr W last updated on 11/Jan/21

r=distance from pedal point (0,0)         to a point C(x,y) on a curve  p=distance from pedal point (0,0)         to the tangent of the curve at the         point C(x,y).  the equation which expresses the  relation between r and p is called  the pedal equation of the curve.

$${r}={distance}\:{from}\:{pedal}\:{point}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:{to}\:{a}\:{point}\:{C}\left({x},{y}\right)\:{on}\:{a}\:{curve} \\ $$$${p}={distance}\:{from}\:{pedal}\:{point}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:{to}\:{the}\:{tangent}\:{of}\:{the}\:{curve}\:{at}\:{the} \\ $$$$\:\:\:\:\:\:\:{point}\:{C}\left({x},{y}\right). \\ $$$${the}\:{equation}\:{which}\:{expresses}\:{the} \\ $$$${relation}\:{between}\:{r}\:{and}\:{p}\:{is}\:{called} \\ $$$${the}\:{pedal}\:{equation}\:{of}\:{the}\:{curve}. \\ $$

Commented by bemath last updated on 11/Jan/21

what is the pedal equation of the ellips

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{pedal}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellips} \\ $$

Commented by mr W last updated on 11/Jan/21

for ellipse it is  r^2 +((a^2 b^2 )/p^2 )=a^2 +b^2

$${for}\:{ellipse}\:{it}\:{is} \\ $$$${r}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{p}^{\mathrm{2}} }={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$

Answered by BHOOPENDRA last updated on 11/Jan/21

the equation of the tangent is   given  (x^2 /a^2 )+(y^2 /b^2 )=1−−−−(1)  it can be written as   ⇒((xX)/a^2 )+((yY)/b^2 )=1−−−−−(2)  Now we can compare AX+By+c=0  with perpendicular distance formula  (0,0)  P=−∣(c/( (√(A^2 +B^2 )))) ∣whereA^2 =(x/a^4 ),B^2 =(y/b^4 )  now r^2 =x^2 +y^2   (1/p^2 )=(x^2 /a^4 )+(y^2 /b^4 )−−−−−(3)  now after simlification  (x^2 /a^2 )=((r^2 −b^2 )/(a^2 −b^2 ))−−−−−(4)  similarly   (y^2 /b^2 )=((a^2 −r^2 )/(a^2 −b^2 ))−−−−−−(5)  now put value in equation (3)  we will get   ((a^2 b^2 )/p^2 )=a^2 +b^2 −r^2   And this will be your pedal equation

$${the}\:{equation}\:{of}\:{the}\:{tangent}\:{is}\: \\ $$$${given} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}−−−−\left(\mathrm{1}\right) \\ $$$${it}\:{can}\:{be}\:{written}\:{as}\: \\ $$$$\Rightarrow\frac{{xX}}{{a}^{\mathrm{2}} }+\frac{{yY}}{{b}^{\mathrm{2}} }=\mathrm{1}−−−−−\left(\mathrm{2}\right) \\ $$$${Now}\:{we}\:{can}\:{compare}\:{AX}+{By}+{c}=\mathrm{0} \\ $$$${with}\:{perpendicular}\:{distance}\:{formula} \\ $$$$\left(\mathrm{0},\mathrm{0}\right) \\ $$$${P}=−\mid\frac{{c}}{\:\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }}\:\mid{whereA}^{\mathrm{2}} =\frac{{x}}{{a}^{\mathrm{4}} },{B}^{\mathrm{2}} =\frac{{y}}{{b}^{\mathrm{4}} } \\ $$$${now}\:{r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{p}^{\mathrm{2}} }=\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }−−−−−\left(\mathrm{3}\right) \\ $$$${now}\:{after}\:{simlification} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\frac{{r}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }−−−−−\left(\mathrm{4}\right) \\ $$$${similarly}\: \\ $$$$\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }−−−−−−\left(\mathrm{5}\right) \\ $$$${now}\:{put}\:{value}\:{in}\:{equation}\:\left(\mathrm{3}\right) \\ $$$${we}\:{will}\:{get}\: \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{p}^{\mathrm{2}} }={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$${And}\:{this}\:{will}\:{be}\:{your}\:{pedal}\:{equation} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com