All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 128903 by Engr_Jidda last updated on 11/Jan/21
solvethedifferentialequationdy2dx2+y=0
Answered by mindispower last updated on 11/Jan/21
X2+1=0⇒X∈{i,−i}y=aeit+be−it{(aeit+be−it)∣(a,b)∈C2}={acos(t)+bsin(t)}S=acos(t)+bsin(t)2ndy=Σanxn⇒y″=∑n⩾0(n+1)(n+2)an+2xn⇒(n+1)(n+2)an+2+an=0⇒an+2=−an(n+1)(n+2)a2k+2=−a2k(2k+1)(2k+2)=(−1)ka0(2k+2)!a2k+1=(−1)k(2k+1)!a1y=Σanxn=∑∞k=0a2kx2k+∑∞k=0a2k+1x2k+1=a0∑k⩾0(−1)k(2k+2)!x2k+a1∑k⩾0(−1)k(2k+1)!x2k+1=a0cos(x)+a1sin(x)
Answered by Olaf last updated on 11/Jan/21
r2+1=0⇒r=±iy=Aeix+Be−ixory=acosx+bsinx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com