Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128903 by Engr_Jidda last updated on 11/Jan/21

solve the differential equation  (dy^2 /dx^(2 ) )+y=0

solvethedifferentialequationdy2dx2+y=0

Answered by mindispower last updated on 11/Jan/21

X^2 +1=0⇒X∈{i,−i}  y=ae^(it) +be^(−it)   {(ae^(it) +be^(−it) )∣(a,b)∈C^2 }={acos(t)+bsin(t)}  S=acos(t)+bsin(t)  2nd   y=Σa_n x^n ⇒y′′=Σ_(n≥0) (n+1)(n+2)a_(n+2) x^n   ⇒(n+1)(n+2)a_(n+2) +a_n =0  ⇒a_(n+2) =−(a_n /((n+1)(n+2)))  a_(2k+2) =((−a_(2k) )/((2k+1)(2k+2)))=(((−1)^k a_0 )/((2k+2)!))  a_(2k+1) =(((−1)^k )/((2k+1)!))a_1   y=Σa_n x^n =Σ_(k=0) ^∞ a_(2k) x^(2k) +Σ_(k=0) ^∞ a_(2k+1) x^(2k+1)   =a_0 Σ_(k≥0) (((−1)^k )/((2k+2)!))x^(2k) +a_1 Σ_(k≥0) (((−1)^k )/((2k+1)!))x^(2k+1)   =a_0 cos(x)+a_1 sin(x)

X2+1=0X{i,i}y=aeit+beit{(aeit+beit)(a,b)C2}={acos(t)+bsin(t)}S=acos(t)+bsin(t)2ndy=Σanxny=n0(n+1)(n+2)an+2xn(n+1)(n+2)an+2+an=0an+2=an(n+1)(n+2)a2k+2=a2k(2k+1)(2k+2)=(1)ka0(2k+2)!a2k+1=(1)k(2k+1)!a1y=Σanxn=k=0a2kx2k+k=0a2k+1x2k+1=a0k0(1)k(2k+2)!x2k+a1k0(1)k(2k+1)!x2k+1=a0cos(x)+a1sin(x)

Answered by Olaf last updated on 11/Jan/21

r^2 +1 = 0 ⇒ r = ±i  y = Ae^(ix) +Be^(−ix)   or y =  acosx+bsinx

r2+1=0r=±iy=Aeix+Beixory=acosx+bsinx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com