Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 128910 by shaker last updated on 11/Jan/21

Answered by bramlexs22 last updated on 11/Jan/21

 lim_(x→2)  ((x^n −2^n −nx.2^(n−1) +n.2^n )/((x−2)^2 ))=   lim_(x→2)  ((nx^(n−1) −n.2^(n−1) )/(2(x−2)))=   lim_(x→2) ((n.(n−1)x^(n−2) )/2)=((n(n−1)2^(n−2) )/2)  = n(n−1).2^(n−3)

limx2xn2nnx.2n1+n.2n(x2)2=limx2nxn1n.2n12(x2)=limx2n.(n1)xn22=n(n1)2n22=n(n1).2n3

Answered by mathmax by abdo last updated on 11/Jan/21

f(x)=((x^n −2^n −n2^(n−1) (x−2))/((x−2)^2 )) we do the changement x−2=t ⇒  f(x)=g(t)=(((t+2)^n −2^n −n2^(n−1) t)/t^2 )  =((Σ_(k=0) ^n  C_n ^k  t^k  2^(n−k) −2^n −n2^(n−1) t)/t^2 )  =((2^n  +n2^(n−1) t +Σ_(k=2) ^n  C_n ^k  t^k  2^(n−k) −2^n −n2^(n−1) t)/t^2 )  =Σ_(k=2) ^n  C_n ^k  t^(k−2)  2^(n−k)   (k−2=i)  =Σ_(i=0) ^(n−2)  C_n ^(i+2)  t^i  2^(n−i−2)       (x→2 ⇒t→0)  =C_n ^2  2^(n−2)  +C_n ^3  t 2^(n−3)  +..... ⇒  lim_(x→2) f(x)=lim_(t→0) g(t)=2^(n−2)  C_n ^2   =2^(n−2) ×((n!)/((n−2)!2!))  =2^(n−2) ×((n(n−1))/2) =n(n−1)2^(n−3)

f(x)=xn2nn2n1(x2)(x2)2wedothechangementx2=tf(x)=g(t)=(t+2)n2nn2n1tt2=k=0nCnktk2nk2nn2n1tt2=2n+n2n1t+k=2nCnktk2nk2nn2n1tt2=k=2nCnktk22nk(k2=i)=i=0n2Cni+2ti2ni2(x2t0)=Cn22n2+Cn3t2n3+.....limx2f(x)=limt0g(t)=2n2Cn2=2n2×n!(n2)!2!=2n2×n(n1)2=n(n1)2n3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com