Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128952 by mathmax by abdo last updated on 11/Jan/21

calculate A_n =∫_0 ^∞   (dx/((x^2 +1)^n ))   , n integr and n≥1

calculateAn=0dx(x2+1)n,nintegrandn1

Answered by Dwaipayan Shikari last updated on 11/Jan/21

∫_0 ^∞ (dx/((x^2 +1)^n ))  =(1/2)∫_0 ^∞ (t^((1/2)−1) /((t+1)^((n−(1/2))+(1/2)) ))dt=β((1/2),n−(1/2))=((Γ(n−(1/2))Γ((1/2)))/(2Γ(n)))

0dx(x2+1)n=120t121(t+1)(n12)+12dt=β(12,n12)=Γ(n12)Γ(12)2Γ(n)

Answered by mathmax by abdo last updated on 11/Jan/21

A_n =∫_0 ^∞   ((x^2 +1)/((x^2 +1)^(n+1) ))dx =∫_0 ^∞  (x^2 /((x^2  +1)^(n+1) ))dx +A_(n+1)  we have  ∫_0 ^∞   (x^2 /((x^2  +1)^(n+1) ))dx =∫_0 ^∞ x(x(x^2 +1)^(−n−1) )dx  by parts u=x and  v^′  =x(x^2  +1)^(−n−1)  ⇒v=−(1/(2n))(x^2  +1)^(−n)   ⇒∫_0 ^∞  ((x^2 dx)/((x^2  +1)^(n+1) )) =[−(x/(2n))(x^2  +1)^(−n) ]_0 ^∞ +(1/(2n))∫_0 ^∞ (dx/((x^2  +1)^n ))  =(1/(2n))A_n  ⇒A_n =(1/(2n))A_n +A_(n+1)  ⇒A_(n+1) =(1−(1/(2n)))A_n  ⇒  A_(n+1) =((2n−1)/(2n))A_n   ⇒(A_(n+1) /A_n ) =((2n−1)/(2n)) ⇒Π_(k=1) ^(n−1)  (A_(k+1) /A_k )=Π_(k=1) ^(n−1)  ((2k−1)/(2k))  ⇒ (A_2 /A_1 ).(A_3 /A_2 ).....(A_n /A_(n−1) ) =((Π_(k=1) ^(n−1) (2k−1))/(2^(n−1) (n−1)!))⇒  A_n =A_1 ×((1.3....(2n−3))/(2^(n−1) (n−1)!)) =A_1 ×((1.2.3.....(2n−4)(2n−3)(2n−2))/((2^(n−1) )^2 (n−1)!^2 ))  =(((2n−2)!)/(2^(2n−2) ((n−1)!)^2 ))A_1   =(((2n−2)!)/(2^(2n−2) (n−1)!^2 )).(π/2)   (n>1) ⇒  A_n =π×(((2n−2)!)/(2^(2n−1) {(n−1)!^2 }))

An=0x2+1(x2+1)n+1dx=0x2(x2+1)n+1dx+An+1wehave0x2(x2+1)n+1dx=0x(x(x2+1)n1)dxbypartsu=xandv=x(x2+1)n1v=12n(x2+1)n0x2dx(x2+1)n+1=[x2n(x2+1)n]0+12n0dx(x2+1)n=12nAnAn=12nAn+An+1An+1=(112n)AnAn+1=2n12nAnAn+1An=2n12nk=1n1Ak+1Ak=k=1n12k12kA2A1.A3A2.....AnAn1=k=1n1(2k1)2n1(n1)!An=A1×1.3....(2n3)2n1(n1)!=A1×1.2.3.....(2n4)(2n3)(2n2)(2n1)2(n1)!2=(2n2)!22n2((n1)!)2A1=(2n2)!22n2(n1)!2.π2(n>1)An=π×(2n2)!22n1{(n1)!2}

Answered by mathmax by abdo last updated on 11/Jan/21

residus method A_n =(1/2)∫_(−∞) ^(+∞)  (dx/((x^2  +1)^n )) let ϕ(z)=(1/((z^2  +1)^n )) ⇒  ϕ(z)=(1/((z−i)^n (z+i)^n ))  residus give ∫_R ϕ(z)dz=2iπRes(ϕ,i)  Res(ϕ,i)=lim_(z→i)   (1/((n−1)!)){(z−i)^n ϕ(z)}^((n−1))  =lim_(z→i) (1/((n−1)!)){(z+i)^(−n) }^((n−1))   that lead to find  (z+i)^(−n) }^((p))   {(z+i)^(−n) }^((1))  =−n(z+i)^(−n−1)   {(z+i)^(−n) }^((2))  =(−1)^2 n(n+1)(z+i)^(−(n+2))   {(z+i)^(−n) }^((p))  =(−1)^p n(n+1)....(n+p−1)(z+i)^(−n−p)   p=n−1 ⇒{(z+i)^(−n) }^((n−1))  =(−1)^(n−1) n(n+1)....(n+n−1−1)(z+i)^(−n−(n−1))   =(−1)^(n−1) n(n+1).....(2n−2)(z+i)^(−2n+1)   =(((−1)^(n−1) n(n+1)....(2n−2))/((z+i)^(2n−1) )) ⇒  Res(ϕ,i)=lim_(z→i)   (1/((n−1)!))×(((−1)^(n−1) n(n+1)....(2n−2))/((z+i)^(2n−1) ))  =(((−1)^(n−1) n(n+1)....(2n−2))/((n−1)!(2i)^(2n−1) )) =i(((−1)^(n−1) n(n+1)....(2n−2))/((n−1)!2^(2n−1) (−1)^n ))  =−i((n(n+1)....(2n−2))/(2^(2n−1) (n−1)!)) ⇒∫_R ϕ(z)dz =2iπ×(−i)×((n(n+1)....(2n−2))/(2^(2n−1) (n−1)!))  =π×((n(n+1)(n+2)...(2n−2))/(2^(2n−2) (n−1)!))=2A_n  ⇒  A_n =(π/2)×((n(n+1)(n+2)....(2n−2))/(2^(2n−2) (n−1)!))

residusmethodAn=12+dx(x2+1)nletφ(z)=1(z2+1)nφ(z)=1(zi)n(z+i)nresidusgiveRφ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)=limzi1(n1)!{(z+i)n}(n1)thatleadtofind(z+i)n}(p){(z+i)n}(1)=n(z+i)n1{(z+i)n}(2)=(1)2n(n+1)(z+i)(n+2){(z+i)n}(p)=(1)pn(n+1)....(n+p1)(z+i)npp=n1{(z+i)n}(n1)=(1)n1n(n+1)....(n+n11)(z+i)n(n1)=(1)n1n(n+1).....(2n2)(z+i)2n+1=(1)n1n(n+1)....(2n2)(z+i)2n1Res(φ,i)=limzi1(n1)!×(1)n1n(n+1)....(2n2)(z+i)2n1=(1)n1n(n+1)....(2n2)(n1)!(2i)2n1=i(1)n1n(n+1)....(2n2)(n1)!22n1(1)n=in(n+1)....(2n2)22n1(n1)!Rφ(z)dz=2iπ×(i)×n(n+1)....(2n2)22n1(n1)!=π×n(n+1)(n+2)...(2n2)22n2(n1)!=2AnAn=π2×n(n+1)(n+2)....(2n2)22n2(n1)!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com