Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 128995 by bramlexs22 last updated on 12/Jan/21

If tan^2 x −3tan x=1 has the roots  are x_1  and x_2  then find the value  of ∣ cos x_1 .cos x_2  ∣.

Iftan2x3tanx=1hastherootsarex1andx2thenfindthevalueofcosx1.cosx2.

Commented by liberty last updated on 12/Jan/21

 tan^2 x−3tan x−1=0   tan x = ((3 ± (√(13)))/2) → { ((tan x=((3+(√(13)))/2))),((tan x=((3−(√(13)))/2))) :}   { ((cos x = (2/( (√(26+6(√(13)))))))),((cos x = (2/( (√(26−6(√(13)))))))) :} then ∣ cos x_1 .cos x_2  ∣=(4/( (√(676−468))))=(4/(4(√(13)))) =(1/( (√(13))))

tan2x3tanx1=0tanx=3±132{tanx=3+132tanx=3132{cosx=226+613cosx=226613thencosx1.cosx2∣=4676468=4413=113

Answered by Lordose last updated on 12/Jan/21

tan^2 x − 3tanx + (−(3/2))^2  = ((13)/4)  (tanx − (3/2))^2  = ((13)/4) ⇒ tan(x) = ((3±(√(13)))/2)  x_1  = tan^(−1) (((3+(√(13)))/2)) ⇒ cos(x_1 ) = (2/( (√(26+6(√(13))))))     x_2  = tan^(−1) (((3−(√(13)))/2)) ⇒ cos(x_2 ) = (2/( (√(26−6(√(13))))))       Hence, ∣cos(x_1 )cos(x_2 )∣ = (1/( (√(13))))

tan2x3tanx+(32)2=134(tanx32)2=134tan(x)=3±132x1=tan1(3+132)cos(x1)=226+613x2=tan1(3132)cos(x2)=226613Hence,cos(x1)cos(x2)=113

Commented by liberty last updated on 12/Jan/21

i think it (1/( (√(13))))

ithinkit113

Commented by Lordose last updated on 12/Jan/21

you are right  I have found an error in my solution  Thanks

youarerightIhavefoundanerrorinmysolutionThanks

Answered by MJS_new last updated on 12/Jan/21

tan x =t  t^2 −3t−1=0  (t−u)(t−v)=0 ⇒ u+v=3∧uv=−1  cos x =(1/( (√(t^2 +1))))  cos x_1  cos x_2  =(1/( (√((u^2 +1)(v^2 +1)))))=  =(1/( (√(u^2 v^2 +u^2 +v^2 +1))))=(1/( (√(u^2 v^2 +(u+v)^2 −2uv+1))))=  =(1/( (√((−1)^2 +3^2 −2(−1)+1))))=(1/( (√(13))))

tanx=tt23t1=0(tu)(tv)=0u+v=3uv=1cosx=1t2+1cosx1cosx2=1(u2+1)(v2+1)==1u2v2+u2+v2+1=1u2v2+(u+v)22uv+1==1(1)2+322(1)+1=113

Terms of Service

Privacy Policy

Contact: info@tinkutara.com