All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 129009 by bramlexs22 last updated on 12/Jan/21
Givenf(x+1)=1+f(x)1−f(x);f(2)=2and∫22018x.f(2018)dx=2a.3b.5c.7d.11e.101fthena+b+c+d+e+f=__
Answered by liberty last updated on 12/Jan/21
→{x=1→f(2)=1+f(1)1−f(1)=2;f(1)=13x=2⇒f(3)=1+f(2)1−f(2)=3−1=−3x=3⇒f(4)=1+f(3)1−f(3)=−24=−12x=4⇒f(5)=1+f(4)1−f(4)=13x=5⇒f(6)=1+f(5)1−f(5)=4/32/3=2⇒13;2;−3;−12;13;2;...thenf(2018)=f(4×504+2)=f(2)=2∫22018xf(2018)dx=∫220182xdx=20182−22=2020×2016=4×505×4×504=24×5×101×3×168=24×5×101×7×23×32=27×32×5×7×101
Terms of Service
Privacy Policy
Contact: info@tinkutara.com