Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129014 by bramlexs22 last updated on 12/Jan/21

 ∫_(−(1/2)) ^( −(1/4)) x(x+1) (√(1+(1/x^2 )+(1/((x+1)^2 )))) dx =?

1214x(x+1)1+1x2+1(x+1)2dx=?

Commented by Ajao yinka last updated on 12/Jan/21

37/192

Answered by liberty last updated on 12/Jan/21

  x(x+1) (√((x^2 (x+1)^2 +(x+1)^2 +x^2 )/(x^2 (x+1)^2 ))) =    ((√(x^2 (x^2 +2x+1)+x^2 +2x+1+x^2 ))/(−1)) since    (√(x^2 (x+1)^2 )) = ∣x(x+1)∣ = −x(x+1) for −(1/4)≤x≤−(1/2)  (√(x^4 +2x^3 +3x^2 +2x+1)) =(√((x^2 +x+1)^2 ))  = ∣x^2 +x+1∣ >0 for −(1/2)≤x≤−(1/4)

x(x+1)x2(x+1)2+(x+1)2+x2x2(x+1)2=x2(x2+2x+1)+x2+2x+1+x21sincex2(x+1)2=x(x+1)=x(x+1)for14x12x4+2x3+3x2+2x+1=(x2+x+1)2=x2+x+1>0for12x14

Answered by Dwaipayan Shikari last updated on 12/Jan/21

∫_(−(1/2)) ^(−(1/4)) ∣x^2 +x+1∣ dx  =−((7/(192))−(3/(32))+(1/4))=−((37)/(192))

1214x2+x+1dx=(7192332+14)=37192

Terms of Service

Privacy Policy

Contact: info@tinkutara.com