All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 129064 by Eric002 last updated on 12/Jan/21
valuatethefollowingintegralI=∫1∞dt(t)2k+v+32t−1andprovethat:I=πΓ(v+1)Γ(v+32)((v+12)k(1+v2)k(v2+34)k(v2+54)k)
Answered by Dwaipayan Shikari last updated on 12/Jan/21
∫1∞1tzt−1dtz=2k+v+32t−1=u=∫0∞u−12.1(u+1)zdz=∫0∞u12−1(u+1)(z−12)+12du=β(12,z−12)=Γ(12)Γ(z−12)Γ(z)=πΓ(2k+v+32)Γ(2k+v+1)=πΓ(2k+v+1)Γ(2k+v+32)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com