Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 129120 by liberty last updated on 13/Jan/21

  lim_((x,y)→(∞,∞)) ((π/2) −arctan (x^2 +y^2 ))^(1/(ln (x^2 +y^2 ))) =?

$$\:\:\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\infty,\infty\right)} {\mathrm{lim}}\left(\frac{\pi}{\mathrm{2}}\:−\mathrm{arctan}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right)^{\frac{\mathrm{1}}{\mathrm{ln}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}} =? \\ $$

Answered by benjo_mathlover last updated on 13/Jan/21

L=lim_((x,y)→(∞,∞)) ((π/2)−tan^(−1) (x^2 +y^2 ))^(1/(ln (x^2 +y^2 )))   L=e^(lim_((x,y)→(∞,∞)) ((((π/2)−tan^(−1) (x^2 +y^2 ))/(ln (x^2 +y^2 )))))   L=e^(lim_((x,y)→(∞,∞)) (((−((2x+2y)/(1+(x^2 +y^2 )^2 )))/((2x+2y)/(x^2 +y^2 ))) ))   L=e^(lim_((x,y)→(∞,∞)) −(((x^2 +y^2 )/(1+(x^2 +y^2 )^2 ))))   ((L= e^0  = 1)/)

$$\mathcal{L}=\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\infty,\infty\right)} {\mathrm{lim}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right)^{\frac{\mathrm{1}}{\mathrm{ln}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}} \\ $$$$\mathcal{L}=\mathrm{e}^{\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\infty,\infty\right)} {\mathrm{lim}}\left(\frac{\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{ln}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}\right)} \\ $$$$\mathcal{L}=\mathrm{e}^{\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\infty,\infty\right)} {\mathrm{lim}}\left(\frac{−\frac{\mathrm{2x}+\mathrm{2y}}{\mathrm{1}+\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} }}{\frac{\mathrm{2x}+\mathrm{2y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }}\:\right)} \\ $$$$\mathcal{L}=\mathrm{e}^{\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\infty,\infty\right)} {\mathrm{lim}}−\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\right)} \\ $$$$\frac{\mathcal{L}=\:\mathrm{e}^{\mathrm{0}} \:=\:\mathrm{1}}{} \\ $$

Answered by mathmax by abdo last updated on 14/Jan/21

we do the changement x=rcosθ and y=rsinθ ⇒  Lim=lim_(r→+∞) ((π/2)−arctan(r^2 ))^(1/(2lnr))  =lim_(r→∞) e^((1/(2lnr))ln((π/2) −arctan(r^2 )))   we have∣ (π/2)−arctan(r^2 )∣<π ⇒(1/(2lnr))ln((π/2)−arctan(r^2 ))<(π/(2lnr))→o(r→+∞) ⇒  lim_(r→0)  e^((1/(2nr))ln((π/2)−arctan(r^2 ))) =e^0  =1

$$\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}=\mathrm{rcos}\theta\:\mathrm{and}\:\mathrm{y}=\mathrm{rsin}\theta\:\Rightarrow \\ $$$$\mathrm{Lim}=\mathrm{lim}_{\mathrm{r}\rightarrow+\infty} \left(\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\mathrm{r}^{\mathrm{2}} \right)\right)^{\frac{\mathrm{1}}{\mathrm{2lnr}}} \:=\mathrm{lim}_{\mathrm{r}\rightarrow\infty} \mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2lnr}}\mathrm{ln}\left(\frac{\pi}{\mathrm{2}}\:−\mathrm{arctan}\left(\mathrm{r}^{\mathrm{2}} \right)\right)} \\ $$$$\mathrm{we}\:\mathrm{have}\mid\:\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\mathrm{r}^{\mathrm{2}} \right)\mid<\pi\:\Rightarrow\frac{\mathrm{1}}{\mathrm{2lnr}}\mathrm{ln}\left(\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\mathrm{r}^{\mathrm{2}} \right)\right)<\frac{\pi}{\mathrm{2lnr}}\rightarrow\mathrm{o}\left(\mathrm{r}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{r}\rightarrow\mathrm{0}} \:\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2nr}}\mathrm{ln}\left(\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\mathrm{r}^{\mathrm{2}} \right)\right)} =\mathrm{e}^{\mathrm{0}} \:=\mathrm{1} \\ $$

Commented by mathmax by abdo last updated on 14/Jan/21

0<θ<(π/2)

$$\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com