All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 129150 by benjo_mathlover last updated on 13/Jan/21
∫0x(x−u)2uf(u)du=4x−6sinx+2xcosxf(x)=?
Answered by liberty last updated on 13/Jan/21
ddx(∫0x(x−u)2uf(u)du)=ddx(4x−6sinx+2xcosx)⇒2∫0x(x−u)uf(u)du=4−6cosx+2cosx−2xsinxddx(2∫0x(x−u)uf(u)du)=6sinx−2sinx−(2sinx+2xcosx)⇒2∫0xuf(u)du=2sinx−2xcosxddx(2∫0xuf(u)du)=ddx(2sinx−2xcosx)⇒2xf(x)=2cosx−(2cosx−2xsinx)⇒2xf(x)=2xsinx∴f(x)=sinx―
Commented by benjo_mathlover last updated on 13/Jan/21
waw..superb...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com