Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129150 by benjo_mathlover last updated on 13/Jan/21

 ∫_0 ^( x) (x−u)^2 u f(u) du = 4x−6sin x+2xcos x  f(x)=?

0x(xu)2uf(u)du=4x6sinx+2xcosxf(x)=?

Answered by liberty last updated on 13/Jan/21

 (d/dx)(∫_0 ^( x) (x−u)^2 uf(u) du)=(d/dx)(4x−6sin x+2xcos x)  ⇒2∫_0 ^( x) (x−u)u f(u)du = 4−6cos x+2cos x−2xsin x  (d/dx)(2∫_0 ^( x) (x−u)uf(u)du)=6sin x−2sin x−(2sin x+2xcos x)  ⇒2∫_0 ^( x) u f(u) du = 2sin x−2xcos x  (d/dx)(2∫_0 ^( x) u f(u) du)=(d/dx)(2sin x−2xcos x)  ⇒2x f(x)=2cos x−(2cos x−2xsin x)  ⇒2x f(x) = 2x sin x  ∴ f(x) = sin x

ddx(0x(xu)2uf(u)du)=ddx(4x6sinx+2xcosx)20x(xu)uf(u)du=46cosx+2cosx2xsinxddx(20x(xu)uf(u)du)=6sinx2sinx(2sinx+2xcosx)20xuf(u)du=2sinx2xcosxddx(20xuf(u)du)=ddx(2sinx2xcosx)2xf(x)=2cosx(2cosx2xsinx)2xf(x)=2xsinxf(x)=sinx

Commented by benjo_mathlover last updated on 13/Jan/21

waw..superb...

waw..superb...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com