Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 129187 by math178 last updated on 13/Jan/21

Commented by math178 last updated on 13/Jan/21

differantial  what is the special solution?  thank you <3

$${differantial} \\ $$$${what}\:{is}\:{the}\:{special}\:{solution}? \\ $$$${thank}\:{you}\:<\mathrm{3} \\ $$

Answered by Olaf last updated on 13/Jan/21

y^((3)) −4y′′+y′+6y = x^3 −4x+2 (1)  y_0  = ax^3 +bx^2 +cx+d  y_0 ′ = 3ax^2 +2bx+c  y_0 ′′ = 6ax+2b  y_0 ^((3))  = 6a  y_0  is solution of equation (1)  ⇔ 6a−4(6ax+2b)+(3ax^2 +2bx+c)+  +6(ax^3 +bx^2 +cx+d) = x^3 −4x+2   { ((6a = 1 (2))),((3a+6b = 0 (3))),((−24a+2b+6c = −4 (4))),((6a−8b+c+6d = 2 (5))) :}  (2) : a = (1/6)  (3) : b = −(1/(12))  (4) : c = (1/(36))  (5) : d = ((11)/(216))  y_0  = (x^3 /6)−(x^2 /(12))+(x/(36))+((11)/(216))    y_H ^((3)) −4y_H ′′+y_H ′+6y_H  = 0 (6)  We solve r^3 −4r^2 +r+6 = 0 (7)  (r+1)(r^2 −5r+6) = 0  (r+1)(r−2)(r−3) = 0  ⇒ the solutions of (7) are −1, 2 and 3  and y_H  = Ae^(−x) +Be^(2x) +Ce^(3x)     y = y_H +y_0  = Ae^(−x) +Be^(2x) +Ce^(3x) +(x^3 /6)−(x^2 /(12))+(x/(36))+((11)/(216))

$${y}^{\left(\mathrm{3}\right)} −\mathrm{4}{y}''+{y}'+\mathrm{6}{y}\:=\:{x}^{\mathrm{3}} −\mathrm{4}{x}+\mathrm{2}\:\left(\mathrm{1}\right) \\ $$$${y}_{\mathrm{0}} \:=\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${y}_{\mathrm{0}} '\:=\:\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c} \\ $$$${y}_{\mathrm{0}} ''\:=\:\mathrm{6}{ax}+\mathrm{2}{b} \\ $$$${y}_{\mathrm{0}} ^{\left(\mathrm{3}\right)} \:=\:\mathrm{6}{a} \\ $$$${y}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation}\:\left(\mathrm{1}\right) \\ $$$$\Leftrightarrow\:\mathrm{6}{a}−\mathrm{4}\left(\mathrm{6}{ax}+\mathrm{2}{b}\right)+\left(\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c}\right)+ \\ $$$$+\mathrm{6}\left({ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\right)\:=\:{x}^{\mathrm{3}} −\mathrm{4}{x}+\mathrm{2} \\ $$$$\begin{cases}{\mathrm{6}{a}\:=\:\mathrm{1}\:\left(\mathrm{2}\right)}\\{\mathrm{3}{a}+\mathrm{6}{b}\:=\:\mathrm{0}\:\left(\mathrm{3}\right)}\\{−\mathrm{24}{a}+\mathrm{2}{b}+\mathrm{6}{c}\:=\:−\mathrm{4}\:\left(\mathrm{4}\right)}\\{\mathrm{6}{a}−\mathrm{8}{b}+{c}+\mathrm{6}{d}\:=\:\mathrm{2}\:\left(\mathrm{5}\right)}\end{cases} \\ $$$$\left(\mathrm{2}\right)\::\:{a}\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\left(\mathrm{3}\right)\::\:{b}\:=\:−\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\left(\mathrm{4}\right)\::\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{36}} \\ $$$$\left(\mathrm{5}\right)\::\:{d}\:=\:\frac{\mathrm{11}}{\mathrm{216}} \\ $$$${y}_{\mathrm{0}} \:=\:\frac{{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{{x}^{\mathrm{2}} }{\mathrm{12}}+\frac{{x}}{\mathrm{36}}+\frac{\mathrm{11}}{\mathrm{216}} \\ $$$$ \\ $$$${y}_{\mathrm{H}} ^{\left(\mathrm{3}\right)} −\mathrm{4}{y}_{\mathrm{H}} ''+{y}_{\mathrm{H}} '+\mathrm{6}{y}_{\mathrm{H}} \:=\:\mathrm{0}\:\left(\mathrm{6}\right) \\ $$$$\mathrm{We}\:\mathrm{solve}\:{r}^{\mathrm{3}} −\mathrm{4}{r}^{\mathrm{2}} +{r}+\mathrm{6}\:=\:\mathrm{0}\:\left(\mathrm{7}\right) \\ $$$$\left({r}+\mathrm{1}\right)\left({r}^{\mathrm{2}} −\mathrm{5}{r}+\mathrm{6}\right)\:=\:\mathrm{0} \\ $$$$\left({r}+\mathrm{1}\right)\left({r}−\mathrm{2}\right)\left({r}−\mathrm{3}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\left(\mathrm{7}\right)\:\mathrm{are}\:−\mathrm{1},\:\mathrm{2}\:\mathrm{and}\:\mathrm{3} \\ $$$$\mathrm{and}\:{y}_{\mathrm{H}} \:=\:\mathrm{A}{e}^{−{x}} +\mathrm{B}{e}^{\mathrm{2}{x}} +\mathrm{C}{e}^{\mathrm{3}{x}} \\ $$$$ \\ $$$${y}\:=\:{y}_{\mathrm{H}} +{y}_{\mathrm{0}} \:=\:\mathrm{A}{e}^{−{x}} +\mathrm{B}{e}^{\mathrm{2}{x}} +\mathrm{C}{e}^{\mathrm{3}{x}} +\frac{{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{{x}^{\mathrm{2}} }{\mathrm{12}}+\frac{{x}}{\mathrm{36}}+\frac{\mathrm{11}}{\mathrm{216}} \\ $$

Commented by math178 last updated on 13/Jan/21

thank you =)

$$\left.{thank}\:{you}\:=\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com