Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129319 by snipers237 last updated on 14/Jan/21

Prove that    if f is such as f ′(x)=((f(x))/(x(1−x−f(x))))  and f(1)=0 but f ≇Θ . Then   ★ f is the unique bijection from R^∗  to R and    ★lim_(x→0)  f(x)=+∞  and lim_(x→0) xf(x)=0   ★ ∫_0 ^(+∞) f^(−1) (y)dy= ζ(2)=∫_0 ^1 f(x)dx

$${Prove}\:{that}\: \\ $$$$\:{if}\:{f}\:{is}\:{such}\:{as}\:{f}\:'\left({x}\right)=\frac{{f}\left({x}\right)}{{x}\left(\mathrm{1}−{x}−{f}\left({x}\right)\right)} \\ $$$${and}\:{f}\left(\mathrm{1}\right)=\mathrm{0}\:{but}\:{f}\:\ncong\Theta\:.\:{Then} \\ $$$$\:\bigstar\:{f}\:{is}\:{the}\:{unique}\:{bijection}\:{from}\:\mathbb{R}^{\ast} \:{to}\:\mathbb{R}\:{and}\: \\ $$$$\:\bigstar\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)=+\infty\:\:{and}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{xf}\left({x}\right)=\mathrm{0} \\ $$$$\:\bigstar\:\int_{\mathrm{0}} ^{+\infty} {f}^{−\mathrm{1}} \left({y}\right){dy}=\:\zeta\left(\mathrm{2}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com