Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129418 by mnjuly1970 last updated on 15/Jan/21

            ...advsnced      calculus....         calculate: Ω=∫_0 ^( ∞) e^(−(√x) ) ln(1+(1/( (√x) )))dx

$$\:\:\:\:\:\:\:\:\:\:\:\:...{advsnced}\:\:\:\:\:\:{calculus}....\:\: \\ $$$$ \\ $$$$\:\:\:{calculate}:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {e}^{−\sqrt{{x}}\:} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{x}}\:}\right){dx} \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 15/Jan/21

∫_0 ^∞ e^(−(√x)) log(1+(√x))−∫_0 ^∞ e^(−(√x)) log((√x))dx  =2∫_0 ^∞ te^(−t) log(1+t)−2∫_0 ^∞ te^(−t) log(t)  =2−2(Γ′(2))=2−2(−γ+1)=2γ

$$\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{x}}} {log}\left(\mathrm{1}+\sqrt{{x}}\right)−\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{x}}} {log}\left(\sqrt{{x}}\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {te}^{−{t}} {log}\left(\mathrm{1}+{t}\right)−\mathrm{2}\int_{\mathrm{0}} ^{\infty} {te}^{−{t}} {log}\left({t}\right) \\ $$$$=\mathrm{2}−\mathrm{2}\left(\Gamma'\left(\mathrm{2}\right)\right)=\mathrm{2}−\mathrm{2}\left(−\gamma+\mathrm{1}\right)=\mathrm{2}\gamma \\ $$

Commented by mnjuly1970 last updated on 15/Jan/21

excellent...grateful..

$${excellent}...{grateful}.. \\ $$

Answered by mindispower last updated on 15/Jan/21

(√x)=t  ⇒∫_0 ^∞ e^(−t) ln(1+(1/t)).2tdt  ∫ln(1+t)te^(−t) dt  by part  ∫te^(−t) dt=−(t+1)e^(−t) dt  ∫_0 ^∞ ln(1+t)te^(−t) dt=[−(t+1)e^(−t) ln(1+t)]_0 ^∞ +∫(((t+1)e^(−t) )/(t+1))dt  =∫_0 ^∞ e^(−t) dt=Γ(1)=1  ∫_0 ^∞ te^(−t) ln(t)dt=∂_x ∫_0 ^∞ t^(x−1) e^(−t) dt∣_(x=2) =Γ′(2)=Γ(2)Ψ(2)  =Ψ(2)=1+Ψ(1)=1−γ  ∫_0 ^∞ e^(−t) ln(1+(1/t)).2tdt=2∫_0 ^∞ e^(−t) ln(1+t)tdt−2∫_0 ^∞ e^(−t) tln(t)dt  =2.1−2(1−γ)=2γ

$$\sqrt{{x}}={t} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right).\mathrm{2}{tdt} \\ $$$$\int{ln}\left(\mathrm{1}+{t}\right){te}^{−{t}} {dt}\:\:{by}\:{part} \\ $$$$\int{te}^{−{t}} {dt}=−\left({t}+\mathrm{1}\right){e}^{−{t}} {dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{t}\right){te}^{−{t}} {dt}=\left[−\left({t}+\mathrm{1}\right){e}^{−{t}} {ln}\left(\mathrm{1}+{t}\right)\right]_{\mathrm{0}} ^{\infty} +\int\frac{\left({t}+\mathrm{1}\right){e}^{−{t}} }{{t}+\mathrm{1}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt}=\Gamma\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\infty} {te}^{−{t}} {ln}\left({t}\right){dt}=\partial_{{x}} \int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\mid_{{x}=\mathrm{2}} =\Gamma'\left(\mathrm{2}\right)=\Gamma\left(\mathrm{2}\right)\Psi\left(\mathrm{2}\right) \\ $$$$=\Psi\left(\mathrm{2}\right)=\mathrm{1}+\Psi\left(\mathrm{1}\right)=\mathrm{1}−\gamma \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right).\mathrm{2}{tdt}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {ln}\left(\mathrm{1}+{t}\right){tdt}−\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {tln}\left({t}\right){dt} \\ $$$$=\mathrm{2}.\mathrm{1}−\mathrm{2}\left(\mathrm{1}−\gamma\right)=\mathrm{2}\gamma \\ $$

Commented by mnjuly1970 last updated on 16/Jan/21

very nice as always...

$${very}\:{nice}\:{as}\:{always}... \\ $$

Answered by Lordose last updated on 16/Jan/21

  Ω = ∫_0 ^( ∞) e^(−(√x)) ln(1+(1/( (√x))))dx  u=(√x) ⇒ dx = 2udu  Ω = 2∫_0 ^( ∞) ue^(−u) ln(1+(1/u))du = 2∫_0 ^( ∞) ue^(−u) ln(((1+u)/u))du  Ω = 2(∫_0 ^( ∞) ue^(−u) ln(1+u)du − ∫_0 ^( ∞) ue^(−u) ln(u)du)  Φ = ∫_0 ^( ∞) ue^(−u) ln(1+u)du =^(IBP)  ∣−e^(−u) (1+u)ln(1+u)∣_0 ^∞  + ∫_0 ^( ∞) e^(−u) du  Φ = 1  Ω = 2(Φ − ∫_0 ^( ∞) ue^(−u) ln(u)du)  Ω =  2(1 − ∫_0 ^( ∞) ue^(−u) ln(u)du) = 2− (∂/∂a)∣_(a=0) 2∫_0 ^( ∞) u^(1+a−1) e^(−u) du  Ω = 2 − (∂/∂a)∣_(a=0) 2Γ(1+a) =2− 2Γ(1+a)ψ^0 (1+a)∣_(a=0)  = 2 − 2(1−γ)  Ω = 2γ  Where 𝛄 = Euler mascheroni constant  ★L𝛗rD ∅sE

$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{e}^{−\sqrt{\mathrm{x}}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\right)\mathrm{dx} \\ $$$$\mathrm{u}=\sqrt{\mathrm{x}}\:\Rightarrow\:\mathrm{dx}\:=\:\mathrm{2udu} \\ $$$$\Omega\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{u}}\right)\mathrm{du}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\frac{\mathrm{1}+\mathrm{u}}{\mathrm{u}}\right)\mathrm{du} \\ $$$$\Omega\:=\:\mathrm{2}\left(\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\mathrm{1}+\mathrm{u}\right)\mathrm{du}\:−\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\mathrm{u}\right)\mathrm{du}\right) \\ $$$$\Phi\:=\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\mathrm{1}+\mathrm{u}\right)\mathrm{du}\:\overset{\mathrm{IBP}} {=}\:\mid−\mathrm{e}^{−\mathrm{u}} \left(\mathrm{1}+\mathrm{u}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{u}\right)\mid_{\mathrm{0}} ^{\infty} \:+\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{e}^{−\mathrm{u}} \mathrm{du} \\ $$$$\Phi\:=\:\mathrm{1} \\ $$$$\Omega\:=\:\mathrm{2}\left(\Phi\:−\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\mathrm{u}\right)\mathrm{du}\right) \\ $$$$\Omega\:=\:\:\mathrm{2}\left(\mathrm{1}\:−\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{ln}\left(\mathrm{u}\right)\mathrm{du}\right)\:=\:\mathrm{2}−\:\frac{\partial}{\partial\mathrm{a}}\mid_{\mathrm{a}=\mathrm{0}} \mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \mathrm{u}^{\mathrm{1}+\mathrm{a}−\mathrm{1}} \mathrm{e}^{−\mathrm{u}} \mathrm{du} \\ $$$$\Omega\:=\:\mathrm{2}\:−\:\frac{\partial}{\partial\mathrm{a}}\mid_{\mathrm{a}=\mathrm{0}} \mathrm{2}\Gamma\left(\mathrm{1}+\mathrm{a}\right)\:=\mathrm{2}−\:\mathrm{2}\Gamma\left(\mathrm{1}+\mathrm{a}\right)\psi^{\mathrm{0}} \left(\mathrm{1}+\mathrm{a}\right)\mid_{\mathrm{a}=\mathrm{0}} \:=\:\mathrm{2}\:−\:\mathrm{2}\left(\mathrm{1}−\gamma\right) \\ $$$$\Omega\:=\:\mathrm{2}\gamma \\ $$$$\mathrm{Where}\:\boldsymbol{\gamma}\:=\:\mathrm{Euler}\:\mathrm{mascheroni}\:\mathrm{constant} \\ $$$$\bigstar\boldsymbol{\mathrm{L}\phi\mathrm{rD}}\:\boldsymbol{\varnothing\mathrm{sE}} \\ $$

Commented by mnjuly1970 last updated on 16/Jan/21

thank you mr lordos...

$${thank}\:{you}\:{mr}\:{lordos}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com