Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129446 by Eric002 last updated on 15/Jan/21

find the fourier transform of signum  function

$${find}\:{the}\:{fourier}\:{transform}\:{of}\:{signum} \\ $$$${function} \\ $$

Answered by Olaf last updated on 16/Jan/21

sgn(x) =  { ((−1, x < 1)),((0, x = 0)),((+1, x > 1)) :}   sgn^(�) (f) = lim_(T→∞,α→0) {∫_(−(T/2)) ^(+(T/2)) sgn_α (t)e^(−j2πft) dt}  with sgn_α (t) =  { ((−e^(αt) , t < 0)),((+e^(αt) , t > 0)) :}  sgn^(�) (f) = lim_(T→∞,α→0)  {−∫_(−(T/2)) ^(+0) e^(−jt(2πf+jα)) dt  +∫_0 ^(+(T/2)) e^(−jt(2πf−jα)) dt}  sgn^(�) (f) = lim_(T→∞,α→0)  {(1/(−α+j2πf))+(1/(α+j2πf))  +((e^(−α(T/2)) e^(jπft) )/(α−j2πf))+((e^(−α(T/2)) e^(−j2πf) )/(α+j2πf))}  Finally, by imposing αT→∞ :  sgn^(�) (f) = lim_(α→0)  {((j4πf)/(−α^2 −4π^2 f^2 ))} = (1/(jπf))  sgn^(�) (f) = = (1/(jπf)), f is the frequency [Hertz]  or sgn^(�) (ω) = (1/( (√(2π)))).(1/(jπ(ω/(2π)))) = (√(2/π)).(1/(jω))  (ω is the pulsation [rad.s^(−1) ])

$$\mathrm{sgn}\left({x}\right)\:=\:\begin{cases}{−\mathrm{1},\:{x}\:<\:\mathrm{1}}\\{\mathrm{0},\:{x}\:=\:\mathrm{0}}\\{+\mathrm{1},\:{x}\:>\:\mathrm{1}}\end{cases}\: \\ $$$$\widehat {\mathrm{sgn}}\left({f}\right)\:=\:\underset{{T}\rightarrow\infty,\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\int_{−\frac{{T}}{\mathrm{2}}} ^{+\frac{{T}}{\mathrm{2}}} \mathrm{sgn}_{\alpha} \left({t}\right){e}^{−{j}\mathrm{2}\pi{ft}} {dt}\right\} \\ $$$$\mathrm{with}\:\mathrm{sgn}_{\alpha} \left({t}\right)\:=\:\begin{cases}{−{e}^{\alpha{t}} ,\:{t}\:<\:\mathrm{0}}\\{+{e}^{\alpha{t}} ,\:{t}\:>\:\mathrm{0}}\end{cases} \\ $$$$\widehat {\mathrm{sgn}}\left({f}\right)\:=\:\underset{{T}\rightarrow\infty,\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left\{−\int_{−\frac{{T}}{\mathrm{2}}} ^{+\mathrm{0}} {e}^{−{jt}\left(\mathrm{2}\pi{f}+{j}\alpha\right)} {dt}\right. \\ $$$$\left.+\int_{\mathrm{0}} ^{+\frac{{T}}{\mathrm{2}}} {e}^{−{jt}\left(\mathrm{2}\pi{f}−{j}\alpha\right)} {dt}\right\} \\ $$$$\widehat {\mathrm{sgn}}\left({f}\right)\:=\:\underset{{T}\rightarrow\infty,\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left\{\frac{\mathrm{1}}{−\alpha+{j}\mathrm{2}\pi{f}}+\frac{\mathrm{1}}{\alpha+{j}\mathrm{2}\pi{f}}\right. \\ $$$$\left.+\frac{{e}^{−\alpha\frac{{T}}{\mathrm{2}}} {e}^{{j}\pi{ft}} }{\alpha−{j}\mathrm{2}\pi{f}}+\frac{{e}^{−\alpha\frac{{T}}{\mathrm{2}}} {e}^{−{j}\mathrm{2}\pi{f}} }{\alpha+{j}\mathrm{2}\pi{f}}\right\} \\ $$$$\mathrm{Finally},\:\mathrm{by}\:\mathrm{imposing}\:\alpha{T}\rightarrow\infty\:: \\ $$$$\widehat {\mathrm{sgn}}\left({f}\right)\:=\:\underset{\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left\{\frac{{j}\mathrm{4}\pi{f}}{−\alpha^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}} {f}^{\mathrm{2}} }\right\}\:=\:\frac{\mathrm{1}}{{j}\pi{f}} \\ $$$$\widehat {\mathrm{sgn}}\left({f}\right)\:=\:=\:\frac{\mathrm{1}}{{j}\pi{f}},\:{f}\:\mathrm{is}\:\mathrm{the}\:\mathrm{frequency}\:\left[\mathrm{Hertz}\right] \\ $$$$\mathrm{or}\:\widehat {\mathrm{sgn}}\left(\omega\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}.\frac{\mathrm{1}}{{j}\pi\frac{\omega}{\mathrm{2}\pi}}\:=\:\sqrt{\frac{\mathrm{2}}{\pi}}.\frac{\mathrm{1}}{{j}\omega} \\ $$$$\left(\omega\:\mathrm{is}\:\mathrm{the}\:{pulsation}\:\left[\mathrm{rad}.\mathrm{s}^{−\mathrm{1}} \right]\right) \\ $$

Commented by Eric002 last updated on 16/Jan/21

well done sir

$${well}\:{done}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com