Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129545 by mnjuly1970 last updated on 16/Jan/21

Answered by mindispower last updated on 16/Jan/21

=∫_0 ^∞ ((sin^2 (x))/x^2 )−∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx  ∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx=∫_0 ^∞ ((1−cos(2x))/(2(1+x^2 )))dx=(π/4)−(1/2)Re∫_0 ^∞ (e^(2ix) /(1+x^2 ))  =(π/4)−((Re)/2).2iπ.(e^(−2) /(2i))=(π/4)−(π/(2e^2 ))  ∫_0 ^∞ ((sin^2 (x))/x^2 )=[−((sin^2 (x))/x)]_0 ^∞ +∫_0 ^∞ ((sin(2x))/x)dx  =(π/2)  we get (π/4)(1+(2/e^2 ))

=0sin2(x)x20sin2(x)1+x2dx0sin2(x)1+x2dx=01cos(2x)2(1+x2)dx=π412Re0e2ix1+x2=π4Re2.2iπ.e22i=π4π2e20sin2(x)x2=[sin2(x)x]0+0sin(2x)xdx=π2wegetπ4(1+2e2)

Commented by mnjuly1970 last updated on 16/Jan/21

god keep you ..mr power..

godkeepyou..mrpower..

Answered by mathmax by abdo last updated on 16/Jan/21

Φ=∫_0 ^∞   ((sin^2 x)/(x^2 +x^4 ))dx ⇒Φ=∫_0 ^∞  ((sin^2 x)/(x^2 (1+x^2 )))dx =∫_0 ^∞ ((1/x^2 )−(1/(x^2 +1)))sin^2 xdx  =∫_0 ^∞  ((sin^2 x)/x^2 )dx−∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx  by parts  ∫_0 ^∞  ((sin^2 x)/x^2 )dx =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞   (1/x)2sinx cosxdx  =∫_0 ^∞  ((sin(2x))/x)dx =∫_0 ^∞  ((sin(2x))/(2x))d(2x)=(π/2)  ∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx =∫_0 ^∞  ((1−cos(2x))/(2(x^2  +1)))dx=(1/2)∫_0 ^∞  (dx/(x^2  +1))−(1/2)∫_0 ^∞ ((cos(2x))/(x^2  +1))dx  =(π/4)−(1/4)∫_(−∞) ^(+∞)  ((cos(2x))/(x^2  +1))dx  and∫_(−∞) ^(+∞)  ((cos(2x))/(x^(2 ) +1))dx=Re(∫_(−∞) ^(+∞)  (e^(2ix) /(x^2  +1))dx)  =Re(2iπ (e^(−2) /(2i)))  =(π/e^2 ) ⇒Φ =(π/2)−((π/4)−(π/(4e^2 )))  =(π/4)+(π/(4e^2 )) ⇒Φ=(π/4)(1+(1/e^2 )).

Φ=0sin2xx2+x4dxΦ=0sin2xx2(1+x2)dx=0(1x21x2+1)sin2xdx=0sin2xx2dx0sin2xx2+1dxbyparts0sin2xx2dx=[sin2xx]0+01x2sinxcosxdx=0sin(2x)xdx=0sin(2x)2xd(2x)=π20sin2xx2+1dx=01cos(2x)2(x2+1)dx=120dxx2+1120cos(2x)x2+1dx=π414+cos(2x)x2+1dxand+cos(2x)x2+1dx=Re(+e2ixx2+1dx)=Re(2iπe22i)=πe2Φ=π2(π4π4e2)=π4+π4e2Φ=π4(1+1e2).

Commented by mnjuly1970 last updated on 16/Jan/21

thanks alot mr max...

thanksalotmrmax...

Commented by mathmax by abdo last updated on 16/Jan/21

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com