Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129569 by zakirullah last updated on 16/Jan/21

Qi. using binomial theorem, prove that   (3^(2n+2 ) −8n−9) is divisible by 64, where   n is positive integer.  Qii.  By mathematical induction;     (cosα+(n−1)β) = cos(α+(((n−1)β)/2))×((sin(nβ/2))/(sin(β/2)))

$$\mathrm{Qi}.\:\mathrm{using}\:\mathrm{binomial}\:\mathrm{theorem},\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\left(\mathrm{3}^{\mathrm{2n}+\mathrm{2}\:} −\mathrm{8n}−\mathrm{9}\right)\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{64},\:\mathrm{where} \\ $$$$\:\mathrm{n}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer}. \\ $$$$\mathrm{Qii}.\:\:\mathrm{By}\:\mathrm{mathematical}\:\mathrm{induction};\: \\ $$$$\:\:\left(\mathrm{cos}\alpha+\left(\mathrm{n}−\mathrm{1}\right)\beta\right)\:=\:\mathrm{cos}\left(\alpha+\frac{\left(\mathrm{n}−\mathrm{1}\right)\beta}{\mathrm{2}}\right)×\frac{\mathrm{sin}\left(\mathrm{n}\beta/\mathrm{2}\right)}{\mathrm{sin}\left(\beta/\mathrm{2}\right)} \\ $$

Answered by Dwaipayan Shikari last updated on 16/Jan/21

cosα+cos(α+β)+cos(α+2β)+...+cos(α+(n−1)β)  =(1/(2sin(β/2)))(sin(α+(β/2))−sin(α−(β/2))+sin(α+((3β)/2))−sin(α+(β/2))+...sin(α+nβ−(β/2))−sin(α+nβ−((3β)/2)))  =(1/(2sin(β/2)))(sin(α+nβ−(β/2))−sin(α−(β/2)))  =(1/(sin(β/2)))(cos(α+(((n−1)β)/2))sin(((nβ)/2)))

$${cos}\alpha+{cos}\left(\alpha+\beta\right)+{cos}\left(\alpha+\mathrm{2}\beta\right)+...+{cos}\left(\alpha+\left({n}−\mathrm{1}\right)\beta\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{\beta}{\mathrm{2}}}\left({sin}\left(\alpha+\frac{\beta}{\mathrm{2}}\right)−{sin}\left(\alpha−\frac{\beta}{\mathrm{2}}\right)+{sin}\left(\alpha+\frac{\mathrm{3}\beta}{\mathrm{2}}\right)−{sin}\left(\alpha+\frac{\beta}{\mathrm{2}}\right)+...{sin}\left(\alpha+{n}\beta−\frac{\beta}{\mathrm{2}}\right)−{sin}\left(\alpha+{n}\beta−\frac{\mathrm{3}\beta}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{\beta}{\mathrm{2}}}\left({sin}\left(\alpha+{n}\beta−\frac{\beta}{\mathrm{2}}\right)−{sin}\left(\alpha−\frac{\beta}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{{sin}\frac{\beta}{\mathrm{2}}}\left({cos}\left(\alpha+\frac{\left({n}−\mathrm{1}\right)\beta}{\mathrm{2}}\right){sin}\left(\frac{{n}\beta}{\mathrm{2}}\right)\right) \\ $$

Commented by zakirullah last updated on 16/Jan/21

thanks sir also find Qi?

$$\mathrm{thanks}\:\mathrm{sir}\:\mathrm{also}\:\mathrm{find}\:\mathrm{Qi}? \\ $$

Answered by talminator2856791 last updated on 16/Jan/21

    3^(2n+2) −8n−9 = 9^(n+1) −8n−9   i.  (n+1)^k  ≡ 1 (mod n)  ,     k ∈ N    ⇒ 9^(n+1)  = (8+1)^(n+1)  ≡ 1 (mod 8)      9^(n+1) −9 = 9(9^n −1) = 9∙8Σ_(k=0) ^(n−1) 9^k     from i., deduce  Σ_(k=0) ^(n−1) 9^k  ≡ n (mod 8)   ⇒ 9∙8Σ_(k=0) ^(n−1) 9^k  ≡ 9∙8∙n (mod 8)         9∙8Σ_(k=0) ^(n−1) 9^k  ≡ 0 (mod 8)         9∙8Σ_(k=0) ^(n−1) 9^k  = 8∙8Σ_(k=0) ^(n−1) 9^k  + 8∙Σ_(k=0) ^(n−1) 9^k           8Σ_(k=0) ^(n−1)  9^k  ≡ 0 (mod 8)    ⇒ 8Σ_(k=0) ^(n−1)  9^k  ≡ 8n (mod 64)            ⇒  3^(2n+2) −9 ≡ 8n (mod 64)            3^(2n+2) −8n−9 ≡ 0 (mod 64)

$$\: \\ $$$$\:\mathrm{3}^{\mathrm{2}{n}+\mathrm{2}} −\mathrm{8}{n}−\mathrm{9}\:=\:\mathrm{9}^{{n}+\mathrm{1}} −\mathrm{8}{n}−\mathrm{9} \\ $$$$\:\mathrm{i}.\:\:\left({n}+\mathrm{1}\right)^{{k}} \:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:{n}\right)\:\:,\:\:\:\:\:{k}\:\in\:\mathbb{N}\: \\ $$$$\:\Rightarrow\:\mathrm{9}^{{n}+\mathrm{1}} \:=\:\left(\mathrm{8}+\mathrm{1}\right)^{{n}+\mathrm{1}} \:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$$$\: \\ $$$$\:\mathrm{9}^{{n}+\mathrm{1}} −\mathrm{9}\:=\:\mathrm{9}\left(\mathrm{9}^{{n}} −\mathrm{1}\right)\:=\:\mathrm{9}\centerdot\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \: \\ $$$$\:\mathrm{from}\:\mathrm{i}.,\:\mathrm{deduce}\:\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \:\equiv\:{n}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$$$\:\Rightarrow\:\mathrm{9}\centerdot\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \:\equiv\:\mathrm{9}\centerdot\mathrm{8}\centerdot{n}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{9}\centerdot\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \:\equiv\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{9}\centerdot\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \:=\:\mathrm{8}\centerdot\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \:+\:\mathrm{8}\centerdot\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{9}^{{k}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\mathrm{9}^{{k}} \:\equiv\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$$$\:\:\Rightarrow\:\mathrm{8}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\mathrm{9}^{{k}} \:\equiv\:\mathrm{8}{n}\:\left(\mathrm{mod}\:\mathrm{64}\right) \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\Rightarrow\:\:\mathrm{3}^{\mathrm{2}{n}+\mathrm{2}} −\mathrm{9}\:\equiv\:\mathrm{8}{n}\:\left(\mathrm{mod}\:\mathrm{64}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{2}{n}+\mathrm{2}} −\mathrm{8}{n}−\mathrm{9}\:\equiv\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{64}\right) \\ $$$$\: \\ $$

Commented by zakirullah last updated on 16/Jan/21

you are the great man.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{the}\:\mathrm{great}\:\mathrm{man}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com