Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 129660 by ajfour last updated on 17/Jan/21

Commented by ajfour last updated on 17/Jan/21

If a plank is released in contact  with a smooth cylinder of radius  R, at an angle α. Find the angle  θ when plank is about to leave  contact with cylinder.

IfaplankisreleasedincontactwithasmoothcylinderofradiusR,atanangleα.Findtheangleθwhenplankisabouttoleavecontactwithcylinder.

Answered by mr W last updated on 18/Jan/21

Commented by mr W last updated on 19/Jan/21

assumed that the contact point A is  the end of the rod when the contact  is about to get lost, i.e. θ≤θ_m =2 tan^(−1) (R/L).  let λ=(L/R)  y_A =R+R cos ϕ=L sin θ  ⇒cos ϕ=λ sin θ−1  ⇒sin ϕ=(√(1−(λ sin θ−1)^2 ))=(√(λsin θ(2−λsin θ)))  y_C =(L/2) sin θ=R×(λ/2) sin θ  x_C =R sin ϕ+(L/2) cos θ=R[(√(λ sin θ(2−λ sin θ)))+(λ/2) cos θ]  ω=(dθ/dt)  v_(C,x) =(dx_C /dt)=ω(dx_C /dθ)=((ωλR)/2)[((2cos θ(1−λsin θ))/( (√(λ sin θ(2−λ sin θ)))))−sin θ]  let η=((cos θ(1−λsin θ))/( (√(λ sin θ(2−λ sin θ)))))  ⇒v_(C,x) =((ωλR)/2)(2η−sin θ)  v_(C,y) =(dy_C /dt)=ω(dy_C /dθ)=((ωλR)/2)cos θ  v_C ^2 =v_(C,x) ^2 +v_(C,y) ^2 =(((ωλR)/2))^2 {(2η−sin θ)^2 +cos^2  θ}  ⇒v_C ^2 =(((ωL)/2))^2 [4η(η−sin θ)+1]  (1/2)mv_C ^2 +(1/2)(((mL^2 )/(12)))ω^2 =mg(L/2)(sin α−sin θ)  v_C ^2 +((L^2 ω^2 )/(12))=gL(sin α−sin θ)  ((ω^2 L^2 )/4)[4η(η−sin θ)+1]+((L^2 ω^2 )/(12))=gL(sin α−sin θ)  ω^2 [3η(η−sin θ)+1]=((3g)/L)(sin α−sin θ)  ⇒ω=(√((3g)/L))×(√((sin α−sin θ)/(3η(η−sin θ)+1)))  v_(C,x) =((ωL)/2)(2η−sin θ)  a_(C,x) =(dv_(C,x) /dt)=ω(dv_(C,x) /dθ)=ω(d/dθ){((ωL)/2)(2η−sin θ)}  N sin ϕ=ma_(C,x)   N=0 ⇒ a_(C,x) =0  ⇒(d/dθ){(√((sin α−sin θ)/(3η(η−sin θ)+1)))(η−((sin θ)/2))}=0  that means  (√((sin α−sin θ)/(3η(η−sin θ)+1)))(η−((sin θ)/2))=extremal    example:  λ=(L/R)=3, α=60°  ⇒θ≈32.1111° < 2 tan^(−1) (1/3)≈36.87°✓

assumedthatthecontactpointAistheendoftherodwhenthecontactisabouttogetlost,i.e.θθm=2tan1RL.letλ=LRyA=R+Rcosφ=Lsinθcosφ=λsinθ1sinφ=1(λsinθ1)2=λsinθ(2λsinθ)yC=L2sinθ=R×λ2sinθxC=Rsinφ+L2cosθ=R[λsinθ(2λsinθ)+λ2cosθ]ω=dθdtvC,x=dxCdt=ωdxCdθ=ωλR2[2cosθ(1λsinθ)λsinθ(2λsinθ)sinθ]letη=cosθ(1λsinθ)λsinθ(2λsinθ)vC,x=ωλR2(2ηsinθ)vC,y=dyCdt=ωdyCdθ=ωλR2cosθvC2=vC,x2+vC,y2=(ωλR2)2{(2ηsinθ)2+cos2θ}vC2=(ωL2)2[4η(ηsinθ)+1]12mvC2+12(mL212)ω2=mgL2(sinαsinθ)vC2+L2ω212=gL(sinαsinθ)ω2L24[4η(ηsinθ)+1]+L2ω212=gL(sinαsinθ)ω2[3η(ηsinθ)+1]=3gL(sinαsinθ)ω=3gL×sinαsinθ3η(ηsinθ)+1vC,x=ωL2(2ηsinθ)aC,x=dvC,xdt=ωdvC,xdθ=ωddθ{ωL2(2ηsinθ)}Nsinφ=maC,xN=0aC,x=0ddθ{sinαsinθ3η(ηsinθ)+1(ηsinθ2)}=0thatmeanssinαsinθ3η(ηsinθ)+1(ηsinθ2)=extremalexample:λ=LR=3,α=60°θ32.1111°<2tan11336.87°

Commented by ajfour last updated on 18/Jan/21

Thank you, Sir, for the divine  light, i was in great need of it..

Thankyou,Sir,forthedivinelight,iwasingreatneedofit..

Commented by ajfour last updated on 17/Jan/21

Thanks Sir, lets continue   the discussion tomorrow..

ThanksSir,letscontinuethediscussiontomorrow..

Commented by mr W last updated on 18/Jan/21

Commented by mr W last updated on 18/Jan/21

phase I:  θ_m <θ<α  phase II:  θ ≤ θ_m

phaseI:θm<θ<αphaseII:θθm

Commented by mr W last updated on 18/Jan/21

Answered by mr W last updated on 18/Jan/21

Commented by mr W last updated on 22/Jan/21

phase I  λ=(L/R)  θ_m =2 tan^(−1) (1/λ)  θ_m <θ<α  x_C =(R/(tan (θ/2)))−(L/2)cos θ=R((1/(tan (θ/2)))−((λcos θ)/2))  y_C =(L/2)sin θ=R((λ sin θ)/2)  ω=(dθ/dt)  v_(C,) x=(dx_C /dt)=ω(dx_C /dθ)=((ωR)/2)(−(1/(sin^2  (θ/2)))+λ sin θ)  v_(C,y) =ω(dy_C /dθ)=((ωR)/2)λ cos θ  v_C ^2 =((ω^2 R^2 )/4)[(−(1/(sin^2  (θ/2)))+λ sin θ)^2 +λ^2 cos^2  θ]  v_C ^2 =((ω^2 R^2 )/4)((1/(sin^4  (θ/2)))−((4λ)/(tan (θ/2)))+λ^2 )  (1/2)mv_C ^2 +(1/2)(((mL^2 )/(12)))ω^2 =mg(L/2)(sin α−sin θ)  ((ω^2 R^2 )/4)((1/(sin^4  (θ/2)))−((4λ)/(tan (θ/2)))+λ^2 )+((L^2 /(12)))ω^2 =gL(sin α−sin θ)  [(3/(sin^4  (θ/2)))−((12λ)/(tan (θ/2)))+4λ^2 ]ω^2 =((12g)/L)λ^2 (sin α−sin θ)  ⇒ω=(√((12g)/L))×(√((sin α−sin θ)/((3/(λ^2  sin^4  (θ/2)))−((12)/(λ tan (θ/2)))+4)))  v_(C,x) =((ωR)/2)(−(1/(sin^2  (θ/2)))+λ sin θ)           =R(√((3g)/L))×(√((sin α−sin θ)/((3/(λ^2  sin^4  (θ/2)))−((12)/(λ tan (θ/2)))+4)))(−(1/(sin^2  (θ/2)))+λ sin θ)  a_(C,x) =ω(dv_(C,x) /dθ)  a_(C,x) =ωR(√((3g)/L))× (d/dθ)[(√((sin α−sin θ)/((3/(λ^2  sin^4  (θ/2)))−((12)/(λ tan (θ/2)))+4)))(−(1/(sin^2  (θ/2)))+λ sin θ)]  N sin θ=ma_(C,x)   N=0 ⇒ a_(C,x) =0  ⇒(d/dθ)[(√((sin α−sin θ)/((3/(λ^2  sin^4  (θ/2)))−((12)/(λ tan (θ/2)))+4)))(−(1/(sin^2  (θ/2)))+λ sin θ)]=0  i.e.  (√((sin α−sin θ)/((3/(λ^2  sin^4  (θ/2)))−((12)/(λ tan (θ/2)))+4)))(−(1/(sin^2  (θ/2)))+λ sin θ)=extermal  with θ_m <θ<α  this has normally no solution, i.e.  in phase I we can′t get the case N=0.

phaseIλ=LRθm=2tan11λθm<θ<αxC=Rtanθ2L2cosθ=R(1tanθ2λcosθ2)yC=L2sinθ=Rλsinθ2ω=dθdtvC,x=dxCdt=ωdxCdθ=ωR2(1sin2θ2+λsinθ)vC,y=ωdyCdθ=ωR2λcosθvC2=ω2R24[(1sin2θ2+λsinθ)2+λ2cos2θ]vC2=ω2R24(1sin4θ24λtanθ2+λ2)12mvC2+12(mL212)ω2=mgL2(sinαsinθ)ω2R24(1sin4θ24λtanθ2+λ2)+(L212)ω2=gL(sinαsinθ)[3sin4θ212λtanθ2+4λ2]ω2=12gLλ2(sinαsinθ)ω=12gL×sinαsinθ3λ2sin4θ212λtanθ2+4vC,x=ωR2(1sin2θ2+λsinθ)=R3gL×sinαsinθ3λ2sin4θ212λtanθ2+4(1sin2θ2+λsinθ)aC,x=ωdvC,xdθaC,x=ωR3gL×ddθ[sinαsinθ3λ2sin4θ212λtanθ2+4(1sin2θ2+λsinθ)]Nsinθ=maC,xN=0aC,x=0ddθ[sinαsinθ3λ2sin4θ212λtanθ2+4(1sin2θ2+λsinθ)]=0i.e.sinαsinθ3λ2sin4θ212λtanθ2+4(1sin2θ2+λsinθ)=extermalwithθm<θ<αthishasnormallynosolution,i.e.inphaseIwecantgetthecaseN=0.

Commented by mr W last updated on 19/Jan/21

Answered by mr W last updated on 19/Jan/21

Commented by mr W last updated on 20/Jan/21

Phase II − an other way    R(1+cos ϕ)=L sin θ  cos ϕ=((L sin θ)/R)−1=λ sin θ−1  tan ϕ=((√(λ sin θ (2−λ sin θ)))/(λ sin θ−1))  SB=R+((OB)/(tan ϕ))=R+((L cos θ+R sin ϕ)/(tan ϕ))  SB=(1+cos ϕ+((λ cos θ)/(tan ϕ)))R  ⇒SB=L(sin θ+((cos θ)/(tan ϕ)))  SC^2 =((L/2))^2 +L^2 (sin θ+((cos θ)/(tan ϕ)))^2 −2×(L/2)×L(sin θ+((cos θ)/(tan ϕ)))×cos ((π/2)−θ)  SC^2 =L^2 [(1/4)+(sin θ+((cos θ)/(tan ϕ)))^2 −sin θ (sin θ+((cos θ)/(tan ϕ)))]  ⇒SC^2 =[(1/4)+((cos θ)/(tan ϕ))(sin θ+((cos θ)/(tan ϕ)))]L^2   I_S =I+m×SC^2 =((mL^2 )/(12))+[(1/4)+((cos θ)/(tan ϕ))(sin θ+((cos θ)/(tan ϕ)))]mL^2   ⇒I_S =[(1/3)+((cos θ)/(tan ϕ))(sin θ+((cos θ)/(tan ϕ)))]mL^2   ω=(dθ/dt)  (1/2)I_S ω^2 =mg(L/2)(sin α−sin θ)  [(1/3)+((cos θ)/(tan ϕ))(sin θ+((cos θ)/(tan ϕ)))]mL^2 ω^2 =mgL(sin α−sin θ)  ⇒ω^2 =((3g)/L)×((sin α−sin θ)/(1+((3 cos θ)/(tan ϕ))(sin θ+((cos θ)/(tan ϕ)))))  let ξ=((cos θ)/(tan ϕ))=((cos θ (λ sin θ−1))/( (√(λ sin θ (2−λ sin θ)))))   ⇒ω=(√((3g)/L))×(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))  v_(C,x) =ω(SB−(L/2)sin θ)  ⇒v_(C,x) =ω(((cos θ)/(tan ϕ))+((sin θ)/2))L=ω(ξ+((sin θ)/2))L  a_(C,x) =ω(dv_(C,x) /dθ)=ω(√(3gL))×(d/dθ){(ξ+((sin θ)/2))(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))}  N sin ϕ=ma_(C,x) =mω(√(3gL))×(d/dθ){(ξ+((sin θ)/2))(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))}  (N/(mg))=(3/(sin ϕ))(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))×(d/dθ){(ξ+((sin θ)/2))(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))}  ⇒(N/(mg))=3(√((sin α−sin θ)/(λ sin θ (2−λ sin θ)[1+3ξ(sin θ+ξ)])))×(d/dθ){(ξ+((sin θ)/2))(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))}    for N=0 ⇒ a_(C,x) =0  ⇒(d/dθ){(ξ+((sin θ)/2))(√((sin α−sin θ)/(1+3ξ(sin θ+ξ))))}=0

PhaseIIanotherwayR(1+cosφ)=Lsinθcosφ=LsinθR1=λsinθ1tanφ=λsinθ(2λsinθ)λsinθ1SB=R+OBtanφ=R+Lcosθ+RsinφtanφSB=(1+cosφ+λcosθtanφ)RSB=L(sinθ+cosθtanφ)SC2=(L2)2+L2(sinθ+cosθtanφ)22×L2×L(sinθ+cosθtanφ)×cos(π2θ)SC2=L2[14+(sinθ+cosθtanφ)2sinθ(sinθ+cosθtanφ)]SC2=[14+cosθtanφ(sinθ+cosθtanφ)]L2IS=I+m×SC2=mL212+[14+cosθtanφ(sinθ+cosθtanφ)]mL2IS=[13+cosθtanφ(sinθ+cosθtanφ)]mL2ω=dθdt12ISω2=mgL2(sinαsinθ)[13+cosθtanφ(sinθ+cosθtanφ)]mL2ω2=mgL(sinαsinθ)ω2=3gL×sinαsinθ1+3cosθtanφ(sinθ+cosθtanφ)letξ=cosθtanφ=cosθ(λsinθ1)λsinθ(2λsinθ)ω=3gL×sinαsinθ1+3ξ(sinθ+ξ)vC,x=ω(SBL2sinθ)vC,x=ω(cosθtanφ+sinθ2)L=ω(ξ+sinθ2)LaC,x=ωdvC,xdθ=ω3gL×ddθ{(ξ+sinθ2)sinαsinθ1+3ξ(sinθ+ξ)}Nsinφ=maC,x=mω3gL×ddθ{(ξ+sinθ2)sinαsinθ1+3ξ(sinθ+ξ)}Nmg=3sinφsinαsinθ1+3ξ(sinθ+ξ)×ddθ{(ξ+sinθ2)sinαsinθ1+3ξ(sinθ+ξ)}Nmg=3sinαsinθλsinθ(2λsinθ)[1+3ξ(sinθ+ξ)]×ddθ{(ξ+sinθ2)sinαsinθ1+3ξ(sinθ+ξ)}forN=0aC,x=0ddθ{(ξ+sinθ2)sinαsinθ1+3ξ(sinθ+ξ)}=0

Commented by ajfour last updated on 23/Jan/21

Reviewing these solutions, Sir.  Thank you plentifully!

Reviewingthesesolutions,Sir.Thankyouplentifully!

Commented by mr W last updated on 21/Jan/21

best wish for your health sir!

bestwishforyourhealthsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com