Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 129679 by BHOOPENDRA last updated on 17/Jan/21

Answered by mathmax by abdo last updated on 18/Jan/21

I=∫_0 ^(π/2) x(√(tanx))dx  changement (√(tanx))=t give tanx=t^2  ⇒x=arctan(t^2 ) ⇒  I=∫_0 ^∞   t arctan(t^2 )×((2t)/(1+t^4 ))dt =∫_0 ^∞ ((2t^2 )/(1+t^4 )) arctan(t^2 )dt  =∫_0 ^1  ((2t^2 )/(1+t^4 ))arctan(t^2 )dt +∫_1 ^∞  ((2t^2 )/(1+t^4 )) arctan(t^2 )dt(→t=(1/u))  =2∫_0 ^1  ((t^2  arctan(t^2 ))/(1+t^4 ))dt +2∫_0 ^1   (1/(u^2 (1+(1/u^4 ))))((π/2)−arctan(t^2 ))(du/u^2 )  =2∫_0 ^1  ((t^2  arctan(t^2 ))/(1+t^4 ))dt +2∫_0 ^1  (1/(u^4  +1))((π/2)−arctan(t^2 ))dt  =2∫_0 ^1  (((t^2 −1)arctan(t^2 ))/(1+t^4 ))dt +π∫_0 ^1  (du/(u^4  +1)) and  ∫_0 ^1  (((t^2 −1)arctan(t^2 ))/(1+t^4 ))dt =∫_0 ^1 (t^2 −1)arctan(t^2 )Σ_(n=0) ^∞ (−1)^n  t^(4n) dt  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  (t^2 −1)arctan(t^2 )dt =Σ_(n=0) ^∞  (−1)^n  u_n   u_n =∫_0 ^1  (t^2 −1)arctan(t^2 )dt...be continued...

I=0π2xtanxdxchangementtanx=tgivetanx=t2x=arctan(t2)I=0tarctan(t2)×2t1+t4dt=02t21+t4arctan(t2)dt=012t21+t4arctan(t2)dt+12t21+t4arctan(t2)dt(t=1u)=201t2arctan(t2)1+t4dt+2011u2(1+1u4)(π2arctan(t2))duu2=201t2arctan(t2)1+t4dt+2011u4+1(π2arctan(t2))dt=201(t21)arctan(t2)1+t4dt+π01duu4+1and01(t21)arctan(t2)1+t4dt=01(t21)arctan(t2)n=0(1)nt4ndt=n=0(1)n01(t21)arctan(t2)dt=n=0(1)nunun=01(t21)arctan(t2)dt...becontinued...

Commented by BHOOPENDRA last updated on 19/Jan/21

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com