All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 129684 by mnjuly1970 last updated on 17/Jan/21
...advancedcalculus...provethat:∫0πcos(tan(x)−cot(x))dx=πe2
Answered by mindispower last updated on 17/Jan/21
=2∫0π2cos(tg(x)−cot(x))dx=2∫0∞cos(t−1t)1+t2dt=Re∫−∞∞ei(t−1t)1+t2t=reiϵ,ϵ∈[0,π[ei(reiϵ−e−iϵr)=ei(t−1t),ei(reiϵ−e−iϵr)→0,r→∞wehnr→0r→0+ei(reiϵ+isin(ϵ)−cos(ϵ)r)→0⇒∫−∞+∞ei(t−1t)1+t2dt=2iπ.(Res(ei(t−1t)1+t2,t=i)=2iπRe(ei(i−1i)2i)=2iπ.(e−22i)=πe22∫0∞cos(t−1t)1+t2dt=Re(πe2)=πe2
Answered by mathmax by abdo last updated on 17/Jan/21
I=∫0π2cos(tanx−1tanx)dx+∫π2πcos(tanx−1tanx)dx(→x=π2+t)=2∫0π2cos(tanx−1tanx)dx=tanx=t2∫0∞cos(t−1t)dtt2+1=∫−∞+∞cos(t−1t)t2+1dt=Re(∫−∞+∞ei(t−1t)t2+1dt)letφ(z)=ei(z−1z)z2+1⇒φ(z)=ei(z−1z)(z−i)(z+i)residus[theoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)=2iπ×ei(i−1i)2i=πe−1−1=πe2⇒★I=πe2★
Answered by mnjuly1970 last updated on 20/Jan/21
Terms of Service
Privacy Policy
Contact: info@tinkutara.com